Ve 1
. c‘ VLSI architecture, U L
laboratory synthesis & technology

Democratizing Customized Computing

Jason Cong
Volgenau Chair for Engineering Excellence, UCLA Computer Science
Director, Center for Domain-Specific Computing (CDSC)
https://vast.cs.ucla.edu/people/faculty/jason-cong

https://vast.cs.ucla.edu/people/faculty/jason-cong

From Parallization to Customization

2009 NSF Expeditions in Computing Award
UCLA Newsroom
Parallelization . SR
NSF awards UCLA $10 million to create
: customized computing technology

By Wilset

* Pentium{IV ®
* Pentium Ill ®

Hot plate _Pentium | ®
P Pentium Pro ®

Adapt the architecture to
Application domain

€
°
0
E
3
3

Pentium -

For the Media
Contacts

Aboul ey

LSu Ip 07 05p 0354 025p 0.18p 0.13p 0.1p 007

Original source: Shekhar Borkar, Intel .. . o
... to look beyond parallelization and focus on domain-specific

customization to bring significant power-performance efficiency ...
10/5/22

Jason Cong
University of California

puting industry has entered the era of parallelization. Howev

Domain-Specific Customization

Vivek Sarkar
Rice University

To meet computing needs and overcome power density limitations, the com-
er, highly parallel, | that available with a general-purpose

9
mance, energy, heat dissipation, space, and cost. We bel
i Jook STAr

Customizable Domain-
Specific Computing

Glenn Reinman and Alex Bui
University of California

power/performance efficiency over

interms of perfor- | architecture.
lieve that there s sig- Second, the performance gap be-

B To meer ing needs and

tween a totally customized solution

customization to bring significant power-performance efficiency improvement. | (using an ASIC) and a generak-purpose

solution can be very large. For example,

overcome power density limitations, the computing
community has halted simple processor frequency
scaling and entered the era of i with

presented a case
study of the 128-bit key AES (Advanced Encryption
Standard) algorithm.! In that case study, an

tens to hundreds of computing cores integrated in
a single processor, and hundreds to thousands of
‘computing servers in a warehouse-scale data center.
Such highly parallel, general-purpose computing
systems, however, still face serious challenges in
terms of performance, power, heat dissipation,
space, and cost. We believe that there is significant
opportunity to look beyond parallelization and
focus on domain-specific customization to bring
b eome

AsiC ion in 0.18um CMOS achieved
3.86 Gbits/second at 350 mW, while the same algo-
rithm coded in Java and executed on an embedded
Sparc processor yielded 450 bits/second at 120 mW.
This difference implies a power/performance effi-
ciency gap (measured in Gbits/second/W) of a factor
of roughly 3 million. (Other implementation alterna-
tives were also studied in the same paper, including
the use of FPGAs and StrongARM processors)
Third, it is extremely costly and impractical to

efficiency
improvement to important application domains.

each application in ASICs—the non-
recurring engineering cost of an ASIC design in

IEEE Design & Test, 2011

10/5/22

MORGAN & CLAYPOOL PUBLISHERS

Customizable
Computing

Yu-Ting Chen
Jason Cong
Michael Gill
Glenn Reinman
Bingjun Xiao

SYNTHESIS LECTURES ON
CoMPUTER ARCHITECTURE

Margaret Martonosi, Series Editor

Synthesis Lectures on

Computer Architectures, 2015

NVITED
APER

ustomized Computing has been Our Research Focus Since 2009

Customizable Computing—
From Single Chip to

Datacenters

By JASON CONG ", Fellow IEEE, ZHENMAN FANG
PENG WEI, DI WU, AND CODY HAO YU

ABSTRACT | Since its establishment in 2009, the Center
for Domain-Specific Computing (CDSC) has focused on
customizable computing. We believe that future comput-
ing systems will be customizable with extensive use of
accelerators, as custom-designed accelerators often provide
10-100X performance/energy efficiency over the general-

, Member IEEE, MUHUAN HUANG,

important research dimension enables automation for cus-
tomized computing. This includes automated compilation for
combining source-code-level transformation for high-level syn-
thesis with efficient parameterized architecture template gen-
erations, and efficient runtime support for scheduling and
transparent resource management for integration of FPGAs for

purpose processors. Such an i hitect
presents a fundamental departure from the classical von Neu-
mann architecture, which emphasizes efficient sharing of the
executions of different instructions on a common pipeline,
providing an elegant solution when the computing resource
is scarce. In contrast, the accelerator-rich architecture fea-
tures heterogeneity and customization for energy efficiency;
this is better suited for energy-constrained designs where
the silicon resource is abundant and spatial computing is
favored—which has been the case with the end of Dennard
scaling. Currently, computing has

with support to the existing pro-
gramming interfaces, such as MapReduce, Hadoop, and Spark,
for large-scale distributed computation. We will present the
latest progress in these areas, and also discuss the challenges
and opportunities ahead.

KEYWORDS | Accelerator-ich ~ architecture; CPU-FPGA;
customizable computing; FPGA cloud; specialized acceleration

L INTRODUCTION

interest; for example, this is evident by Intel's $17 billion
acquisition of Altera in 2015 and Amazon's introduction of field-
programmable gate-arrays (FPGAS) in its AWS public cloud.
In this paper, we present an overview of the research pro-
grams and accomplishments of CDSC on customizable com-
puting, from single chip to server node and to datacenters,
with extensive use of composable accelerators and FPGAS.
We highlight our successes in several application domains,

genomics. In addition to architecture innovations, an equally

Since the of the mi in 1971,
the improvement of processor performance in its first
30 years was largely driven by the Dennard scaling of
transistors [1]. This scaling calls for reduction of transistor
dimensions by 30% every generation (roughly every two
years) while keeping electric fields constant everywhere
in the transistor to maintain reliability (which implies
that the supply voltage needs to be reduced by 30% as
well in each generation). Such scaling not only doubles
the transistor density each generation and reduces the
transistor delay by 30%, but also at the same time improves
the nower bv 50% and enerev hv 65% 21 The increased

Proceedings of IEEE, 2019

Successful Examples of Customization

Example:
» Google TPU (Tensor Processing Unit)

First version: 2014

Revised TPU (2017), for training and inference
- DRAM, 2 DDR3 -> GDDR5, 34GB/s -> 180GB/s

» 200x perf/W of Haswell CPU, 70x perf/W of K80 GPU
Based on data in [ISCA2017]

Limitations:
* Too costly for individuals (or small companies) to design

e Take too much time to build

10/5/22

Unified Buffer
for Local Activations
(96Kx256x8b = 24 MiB)
29% of chip

Matrix Multiply Unit
(256x256x8b=64K MAC)
24%

D Host Accumulators B
2 Interf. 2% (4Kx256x32b = 4 MiB) 6% A
M P e _a M

Activation Pipeline 6%

J PCle
il | Interface 3%

m.C
- =

| ddr3
= 3%
Misc. 110 1% | 5

331 mm2 (< CPU: Haswell 18 core, 662 mm2)

75 TDP Watts (< CPU: 145)

91.8 Peak TOPS/chip (CPU: 2.6 TOPS)

Google TPU: In-Datacenter Performance Analysis of a Tensor

Processing Unit, ISCA 2017

Customized Computing on FPGAs:
Example: Scalable Sorting [ISCA 2020]

« Bonsai: Adaptive merge tree sort solution (compute and 1/0O optimal)

» Optimized configuration of merge sort kernel for different memory configurations

» Best DRAM-scale sorting performance

» Scale to TB sorting via reconfiguration

FPGA

Load unit

y

Tree throughput: p elements/cycle

Tree leaf
number: [

10/5/22

DDR DRAM

phose 1: 4 trees

-
DRAM Tree throughput | Tree leaf number
bandwidth p l

16 GB/s 8 128
32 GB/s 16 128 > switch

to phase
64 GB/s 32 64

O tlmaI con{ on for dlfferent avkllable

_____ integers
I

:|/O FPGA phase 2: 1 many-
| I leaves tree (p =
b m s s 4 8,1 =256)

Use of FPGAs trade-off performance for design cost, flexibility, and time-to-silicon 5

Power of Customization (Domain-Specific

Accelerators)

» Special Data Types and Operations

* Do in 1 cycle what normally takes 10s or 100s — 10-1000x efficiency gain

Most significant on ASIC (if one can afford cost and time)
Still very substantial speedup on FPGAs despite its overhead

10/5/22

ook to with

and performance from parallelism.

| BY WILLIAM J. DALLY, YATISH TURAKHIA, AND SONG HAN

lower overhead, such as domain-spe-
cific accelerators, to continue scaling
of performance and efficiency. There
are several ways to realize domain-spe-
cific accelerators as discussed in the

Domain-
Specific
Hardware
Accelerators

FROM THE SIMPLE embedded processor inyour washing
machine to powerful processors in data center servers,
most computing todaytakes place on general-purpose
programmable processors or CPUs. CPUs are attractive
because they are easy to program and because large
code basesexist for them. The programmability of CPUs
stems from their execution of sequences of simple
instructions, such asADD or BRANCH; however, the
energy required tofetchand interpret aninstructionis

10x to 4000x more than that required to performa simple
operation such as ADD. This high overhead was accept
ablewhen processorperformance and efficiency were
scalingaccording to Moore’s Law.** One could simply
waitand anexisting applicationwould run fasterand
more efficiently. Oureconomy hasbecome dependent on
these increasesin computing performance and ef:
ficiency to enable new features and new applications.
I'oday, Moore’s Law haslargelyended," and we must

48 COMMUNICATIONS OF THE ACM | JULY 2020 | VOL 83« NO.T

idebar options.

A domain-specific accelerator is a
hardware computing engine that is
specialized for a particular domain of
applications. Accelerators have been
designed for graphics* deep learn-
ing,* simulation,’ bioinformatics,®
image processing®® and many other
tasks. Accelerators can offer orders of
magnitude improvements in perfor-
mance/cost and performance/W com-
pared to general-purpose computers.
For example, our bioinformatics accel-
erator, Darwin,® is up to 15,000 faster
thanaCPU atreference-based, long-read
assembly. The performance and effi-
ciency of accelerators is due to a com-
bination of specialized operations,
parallelism, efficient memory systems,
and reduction of overhead. Domain-
specific accelerators’ are becoming more
pervasive and more visible, because they
areone of the few remaining ways to con-
tinue to improve performance and effi-
ciencynowthat Moore's Lawhas ended .

Most applications require modifi-
cations to achieve high speed up on

key insights

= Most speedup comes from parallelism
enabled by specialization—the main
source of efficiency.

= The undertying algorithms often have to
change—trading increased hardware-
friendly computation for reduced memory
bandwidth demands.

= Accelerator design is really parallel
programming guided by a cost model—
arithmetic is free and global memory
is expensive.

= Memory typically dominates both area and

A et "

= Specialized instructions give much of the
advantage of a DSA at a fraction of the
devel cost and while retaining

CACM July 2020

i
i
H
H

Question:
Can Every Programmer Easily Desigh DSAs?

Or
Can Every Serious Programmer Easily Design DSAs?

Current Answer: Yes and No

It's Natural to Think about High-Level Synthesis (HLS)?

Significant progress in the past decade

Design Specification
4 CIC**ISystech [User Constraints |

~

N\ _—

s_ﬂnhslmlnn_‘

AutoPilot™

m

(2]

—

Code transformation & opt | &

| s

(]

(\ @
(2]

Platform
Characterization
Library

Behavioral & Communication
L Synthesis and Optimizations)

A 4
s Timing/Power/Layout

RTL SystemC Constraints
~ —

[FPGA]
or ASIC blocks

10/5/22

« Example: xPilot (UCLA 2006) -> AutoPilot (AutoESL)
-> Vivado HLS (Xilinx 2011-)

Platform-based C to RTL synthesis

Synthesize pure ANSI-C and C++, GCC-compatible
compilation flow leveraging LLVM framework

Full support of IEEE-754 floating point data types &
operations

Efficiently handle bit-accurate fixed-point arithmetic
SDC-based scheduling
Automatic memory partitioning

QoR matches or exceeds manual RTL for many designs

TCAD April 2011 (keynote paper) “High-Level Synthesis
for FPGAs: From Prototyping to Deployment”

Good News: Not Difficult to Create Circuits from C/C++ Using HLS

Example code
* MVT kernel from Polybench
« Two matrix-vetor multiplications

void kernel_mvt(double x1[120], double x2[120],
double y_1[120], double y_2[120],
double A[120][120]) {

for (inti=0; i < 120; i++) {
for (intj = 0; j < 120; j++) {
x1[i] += AL * y_1[l;

}
for (int i =0; i < 120; i++) {

for (int j = 0; j < 120; j++) {
x2[i] += A0 * y_2[i];

v

Challenge 1: Synthesized Circuit May Not Have Good Performance

* Not surprising if you have done multi-core programming - the same problem!

* Need to add pragmas (microarchitecture hints).

Example code: MVT kernel from Polybench

void kernel_mvt(double x1[120], double x2[120],
double y_1[120], double y_2[120],
double A[120][120]) {

for (inti=0; i <120; i++) {
for (intj = 0; j < 120; j++) {
xA[i] += A[il[] * y_1[l;

}} 122x speedup

After proper pragma insertions

for (inti=0; i <120; i++) {
for (intj=0; j <120; j++) {
x2[i] += A[][i1 * y_2[l;
}
}

When targeting FPGA, 13x slower
than running on a single-core CPU

void kernel_mvt(double x1[120], double x2[120],
double y_1[120], double y_2[120],
double A[120][120]) {

#pragma ACCEL PIPELINE flatten
for (inti=0;i<120; i++) {

for (int j = 0; j < 120; j++) {

, xA[i] += A[i0] * y_101;

#pragma ACCEL PARALLEL FACTOR=15
for (inti=0;i<120; i++) {
#pragma ACCEL PARALLEL reduction = x2 FACTOR=12
for (int j = 0; j < 120; j++) {
x2[i] += A[[i] * y_2[];
3}
}

Based on the Merlin Compiler, open-sourced by AMD/Xilinx

10

Challenge 2: # Possibilities for Pragmas Insertion Can Be Very Large!

Example code: MVT kernel from Polybench

void kernel_mvt(double x1[120], double x2[120],
double y_1[120], double y_2[120],
double A[120][120]) {

for (inti=0; i < 120; i++) {
for (intj = 0; j < 120; j++) {
x1[i] += A[il0] * y_101;
}
for (int i = 0; i < 120; i++) {
for (intj=0; j < 120; j++) {
x2[i] += A[][i] * y_2[i;

}
}

122x speedup

Solution space
« > 3M design choices

When targeting FPGA, 13x slower
than running on a single-core CPU

vold kernel_mvt(double x1[120], double x2[120],
double y_1[120], double y_2[120],
double A[120][120]) {
#pragma ACCEL PIPELINE auto{__PIPE__L0}
#pragma ACCEL TILE FACTOR=auto{__TILE__LO0}
#pragma ACCEL PHEAINEEfAGTOR=auto{_PARA__L0}
fdoyitint E00) k<1 200§4+4) {
#pragntg AOCEL PIREENE auto{_PIPE_ L2}
#prag[ija-& AGHH PHRWIL-EL FACTOR=auto{_PARA__L2}
} ¥or (intj = 0; j <120; j++) {
xA[i] += Al * y_101; }}
#pragma ACCEL PARALLEL FACTOR=15
#pragntd AQCEL PIPER¥YE auto{_PIPE__L1}
#pragma ACCEL PULRAAGTIOBaactitn =TH2EFACTIOR=12
#prag(het M OFL<PABRAELEL FACTOR=auto{_PARA__ L1}
foxg] im AIIRT29; A1) {
#yragma ACCEL PIPELINE auto{__PIPE__L3}
¥pragma ACCEL PARALLEL FACTOR=auto{__PARA__L3}

forfinti=0-3< 120 i4+4)-L
o (It U, T

J TZU, 7Ty

J 1
x2[i] += AL * y_201; }}}

Search space by AutoDSE

11

Overview of Our Approach

10/5/22

Caffe/ .
! oe Spark Halide others
| Tensorflow
|
! Frontend Frontend Frontend Frontend
: Comlpiler Comlpiler Comfiler Compiler

Intermediate
Representation

Microarchitecture

Optimization

Support domain specific languages
e Spark [DAC ‘18]
e Caffe [DAC “17]
e Halide [FPGA’20]

:1. Architecture Guided Optimization: Based on common computation patterns

IN
T
ouT H

Wi i/‘

N B =5 1Bt B - IB

i i i
OB«?—OB*%—OBG—?—OB

10 b L

WB -- PE == PE -- PE - PE
: ;

« it

)

+ +
WB - PE - PE - PE - PE

I 41 il

WB - PE -+ PE --» PE --» PE

Others
Patterns

Matched
Patterns

FPGA Accelerator

Goal: “Democratize” accelerator designs for customized computing

: of

S R S|

\WBi--* PE - PE - PE - PE
Systolic Array

[DAC ‘17, ICCAD ‘18]

1 2. Apply ML or other optimization techniques for general applications (GNN-DSE) [DAC’22]

: 3. Compose the entire design using latency-insensitive dataflow task [FCCM’21 & FPGA’21 & 21]

FPGA Fabric
NW ACceTérator

s [st

Device DRAM ’

Stencil

[ICCAD ‘18] Composable, Parallel and Pipeline (CPP)
[DAC ‘18]

Variable loop bounds [ICCAD ‘18]

12

Example of Architecture-Guided Optimization: AutoSA

Wang, Jie, Licheng Guo, and Jason Cong. "AutoSA: A Polyhedral Compiler for High-Performance Systolic Arrays on FPGA."

FPGA'2021

#pragma scop
for (int 1 =0; i < M; ++i)
for (int j = 0; j < N; ++j) {

se: C[i1[3] = e;
for (int k = 0; k < K; ++k)
S1: C[i][J] += A[i][k] * B[kI[31;

#pragma endscop

Input: C code

10/5/22

- [~

Output: Systolic array design in HLS C

13

Systolic Array Advantages

Parallelism

Performance

|

Energy Efficiency

10/5/22 14

Many Accelerators are Based on Systolic Arrays

Google TPU Tesla Self-Driving Chip Amazon Infrentia

15

Systolic Array Design Stories from Industry

L00%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

10/5/22 Figure source: Hongbo Rong, "Programmatic control of a compiler for generating high-performance spatial hardware®, arXiv preprint arXiv:1711.07606 (2017).

] I
] 1
1 | <
I 1 (@)
[1 b (e
- - 1 ! =
o
| e 1 sSe
1 1.5 1 months 1 Y=
1 | 1 - T
, months I l %32
~
: : | % >
_ - 1 1 o
L 1 =
SGEMM PairHMM VGG-16 SpMV SGEMM
CGRA FPGA FPGA FPGA FPGA
C OpenCL Verilog SystemVerilogl OpenCL
3 months § 4.25 months 6 months 16 months 18 months
m Design m Coding Verification ® Performance tuning

16

Overview of AutoSA Compilation Flow

Model Extraction

Polyhedral IR

Legality Check

Communication
Management

Auto Tuner

e Search for optimal

design configurations Code Generation

Xilinx Intel Mentor
HLS C OpenCL Catapult
HLS C

10/5/22

Extract polyhedral model from the source code.

Examine if the target program can be mapped to
systolic array.

Construct and optimize PE arrays

O Space-time mapping, array partitioning, latency hiding,

vectorization

Construct and optimize I/O network
O 1/0O network analysis, double buffering, data-packing

Generate target hardware code

17

Challenge: Large Design Space & Many Optimization
Opportunities

Example: Matrix Multiplication

1024 A | X B =| C)

Dataflows types(6) X Dataflow
Configurations(O(2740))

A Closer Look at Computation Management

» Space-time mapping: transforming the program to a systolic array with space-time mapping.

Space-Time Transformation: [i, j]

for (int 17270, 1<'T; 144 space:
for (int § = 0; j < I; j++)
;.. ‘For"'Ci‘rft'k"ﬂ'ﬂ;'k'<'1<;'1<++')' E
e C[iI[JT1 += A[i][k] * B[KI[31;
Input Code of MM: L
for (int i = @; 1 < I; i++) * The generated systolic array:

for (int j = 0; j < J; j++)
for (int k = 0; k < K; k++) ‘ * B ‘ .
C[i1[3] += A[i][k] * BIK][§]; r’]
— > coe = .
Note: Initialization of C omitted for brevity. l
A oL

§ T

10/5/22 19

A Closer Look at Computation Management

 Array partitioning: partitioning the array into smaller sub-arrays to fit limited on-chip resource.

Space-Time Transformation: [i, j]
""156?:"('i'h't'"i"'="'9'3"i"é"i';'"i':+')'""§f)'é'é§'§
: for (int j =0; j < J; j++) :
D For ' (Int k™="0; kK <K k¥ T
:time C[i][j] += A[i][k]* B[KI[]l;

* The generated systolic array:

B
L } .
J
B-m|r
A Do
¥ ¥
‘a3

10/5/22

Array Partitioning

Array partitioning loops

CT or (int iR e i T i)
for (int j.1 =
k.1

0; j.1 < T_J1; j.1++)
for (int =0; k.1 < T_K1; k.1++) :
C[...] += A[...] * B[...];

Sub-array loops

* The generated systolic array:

B

TI1=2
T J1=2

20

A Closer Look at Computation Management

» Latency hiding: permuting parallel loops inside to hide computation latency.

10/5/22

Latency Hiding

for (int i.0 = 0; i.0 < I/T _I1; i.0++)
for (int j.o = 0; j.o < 3/T_J1; j.o++)

NS NN NSNS EEE NN AN EEEEEEEEEENEEEEEEEEEEEEEEENTEsnbEsssanannndnEnnnnnnnnnnn

(. for (int 3.1 =0; .1 < T J1/T 32;5.1++) |
................. tor (int k.1 = 6; k.1 < T Kl; K.1+) .
: for (int 1.2 = @; 1.2 < T_I2; i.2++) .
for (int j.2 = 0;3.2 < T_32;j.2++) :Latency hiding loops
.......................... e ot L

21

A Closer Look at Computation Management

» SIMD vectorization: vectorizing computation to amortize the PE control overheads.

SIMD Vectorization

for (int i.0 = 0; i.0 < I/T_I1; i.0++)
for (int j.o = j.0 < J/T_J1; j.0++)
for (int k.o .0 < K/T_K1; k.0++)
for (int i. i.1 < T _I1/T 125 i.1++)

for (int k.2 =0; k.2 < T _K2;k.2++) : SIMD loop

10/5/22

22

What about Data Communication?

* Polyhedral model supports precise data dependence analysis.
| "]
for (int 1 = 0; i < I; i++) // space i
for (int j = 0; j < J; j++) { // space
or (Mt k = 0; k < K; k++) // time
S1: C[i1[3] = Cc[i][J] + A[i][k] * B[KI[Jl;
} PE PE

RAW D3

(

Dependence Dependence Type Array Access Dependence Distance 1/0 Group
D1 Read (RAR) A[i][k] (0,1,0) gl
D2 Read (RAR) B[k][] (1,0,0) g2
D3 Flow (RAW) C[i][7] (0,0,1) g3
D4 Output (WAW) C[i][3] (0,0,1) g4

We omit the statement of array initialization for brevity.

10/5/22 Example: 1/O network generation based on the polyhedral model 23

Use Dependency to Construct Communication Network

* Polyhedral model supports precise data dependence analysis.

PE —>II! ll_'J ll_'J : 1_>]
gl H g2 E

&
r
<

-3 o om

DRAM
DRAM
DRAM

Dependence Dependence Type Array Access Dependence Distance 1/0 Group
D1 Read (RAR) A[i][k] (0,1,0) gl
D2 Read (RAR) B[k][] (1,0,0) g2
D3 Flow (RAW) C[i][7] (0,0,1) g3
D4 Output (WAW) C[i][3] (0,0,1) g4

We omit the statement of array initialization for brevity.

Example: I/O network generation based on the polyhedral model

Auto-Tuning in AutoSA (More in Late Slides)

Generality

»

Input: Input:
A SCoP program with rectangular iteration domains. An arbitrary SCoP program.

Mathematic Programming-
Based Optimizer

Exhaustive Search with

Pruning

Evolutionary Search Odyssey

< 1 minute minutes to hours

»

Search Time

10/5/22

n
>

26

Benchmark Examples and Productivity Gain

Application Problem Size #Statements Input CLOC Output HLS LOC
Matrix ..
i e [i,),k]:[1024,1024,1024] 2 7 9265
CNN [i,0,h,w,p,q]:[512,512,56,56,3,3] 2 10 9861
MTTKRP [i,k,1,j]:[512,512,512,512] 2 7858
TTMc [i,j,k,1,m]:[128,128,128,128,128] 2 7637
LU

Decomposition [n]:[12/16/20/24] 9 27 1316

Complex systolic Array from C-to-Silicon in a day!
Recall that common industry practice requires 4-18 months.

Performance

Benchmark Platform Array Sizes Data Type GFLOPs MHz D .SP
Efficiency
GRGEElE ISR o ey FP32 602.8 253 97%
17 10
CNN
Xilinx Alveo
AutoSA U250 16x14x8 FP32
Srivastava Intel Arria 0
et al. '19 10 8x9x16 FP32 700 204 99%
MTTKRP
Xilinx Alveo
AutoSA U250 16x8x8 FP32
Srivastava Intel Arria 0
et al. '19 10 8x10x16 FP32 738 205 94%
TTMc | |
Xilinx Alveo
AutoSA U250 16x8x8 FP32

10/5/22

28

AutoSA is Open-Sourced

e Github: https://github.com/UCLA-VAST/AutoSA

* Document: https://autosa.readthedocs.io/en/latest/

& UCLA-VAST / AutoSA L) Notifications st 63 Yok M

<> Code () lIssues 3 1 Pull requests ~ ® Actions [Projects 1 0 wiki © Security |2 Insights

AutoSA: Polyhedral-Based Systolic

@ whbldhwj Fixed HCL example bug 428de7d 12 daysago {1,093 commits Array Compiler # AutoSA
» Welcome to AutoSA's documentation! © Edit on GitHub
github add figures 12 months ago gpsz) (eehissstinede]

automatic-generation systolic-arrays

libs Fixed json generation bugs 21 days ago
. , 0 Readme
autosa_config Revert the config file 20 days ago U Q]
'] o PR Welcome to AutoSA's documentation!
autosa_scrpts Updated autosa scrip 3 days ago e
autosa_tests Fixed HCL example bug age | AutoSA Tutorials AutoSA is an end-to-end systolic array compiler for FPGAs based on the polyhedral model. It takes
R 5 o0 . 5 .
docs Add CNN dataflow docs 13 days ago cleases AutoSA Examples algorithms in high-level programming languages (C) as inputs, performs polyhedral transformation
0SA Example
src Fixed HCL example bug 12 days ago ©121a95 and other architecture optimizations to map algorithms to systolic array architecture.
[.dockerignore add Dockerfile 11 months ago
D gitgnere Commited partal code of tuner Packages Q Getting Started

DigitalOcean « Installation

» AutoSA Tutorials

DigitalOcean App Platform, a n
o AutoSA Examples

that gets your apps to market, fa
Now with $100 Credit.

Resources

« AutoSA Paper
o Github Project
o Docker Image

10/5/22 29

https://github.com/UCLA-VAST/AutoSA
https://autosa.readthedocs.io/en/latest/

Some Architecture Insights from AutoSA

« Example: 1024x1024x1024 GEMM

« Common wisdom: dimensions of a systolic array be divisors of the

problem size.
« Timeloop ISPASS 19 (MIT, Nvidia, Stanford),

Cannot fit
] Fully utili
« dMazeRunner TECS '19 (Ariazon State Univ., Yonsei Univ., Intel) Wasted (fggﬁofansré) FlégyAungﬁﬁ
 Interstellar ASPLOS '20 (Stanford, Tsinghua) FPGA fabric (_\ (8,320 DSPs)
(5,120 DSPs) F\PE AR
» Non-divisor solution can be 50% faster i AN/ ATl =
8

SA Size Throughput e | [ee || 7 ||| e PE 12 || PE PE
Rows N . ' . H
32x4x8 5120 257 MHz 506.71 S WA [ee |- #e
16x13x8 8320 243 MHz 764.46 i S— S—— p—

M 3025 32 16

Non divisor = coe

Cols
Divisor SA Divisor SA Non-divisor SA
10/5/22 Candidate 1 Candidate 2 30

Some More Architecture Insight using AutoSA

« Common wisdom: Minimize off-chip communication. E.g
* Marvel Arxiv '20 (Georgia Tech, Nvidia),
* Chen et al. HPCA ’20 (UCAS, Tsinghua Univ.)

 Again, not necessarily!

SA Size Minimization DSPs Frequenc Throughput CTC Effective
(Cols,Rows, SIMD) Goal quency ghp Trafflc (FLOP/byte) Bandwidth

32x4x8 DRAM Traffic 5120 282 MHz 496.16 GFLOP/s 16.7 MB 4.3 GB/s
16x13x8 Latency 8320 243 MHz 764.46 GFLOP/s 80.3 MB 26.7 36.5 GB/s

10/5/22 31

What about General C/C++ Programs?

« Adopting the Merlin Compiler, developed by Falcon Computing (acquired by Xilinx in 2020 and

open-sourced in 2021)
#pragma ACCEL parallel

- Run multiple loop iterations in parallel (instruction/task-level)

#pragma ACCEL pipeline

- Run multiple loop iterations in pipeline (instruction/task-level)

OpenMP for multi-core CPUs Merlin for FPGAs

for (int 1 =0; i < N; ++i) { for (int i =0; i < N; ++i) {

c[i] += a[i] * b[i]; c[i] += a[i] * b[i];

Automated code transformation and transformation

o On-chip memory banking/partitioning/delinearization
o External memory bursting/streaming/coalescing

o Host interface and host code generation (In OpenCL)

Advanced options for parallel: reduction and stencil variables

AutoDSE: Bottleneck-based Optimizer [TODAES’'22]

Result Database

.....
..,

Expl
Design Space xplorer
C Kernel = Generator +
Partitioner _ Bottleneck
Optimization Algorithm
V.___.

void kernel_mvt(double x1[120], double x2[120],
double y_1[120], double y_2[120],
double A[120][120]) {

for(inti=0;i<120;i++){
for(intj=0;j<120; j++){
x1[i] += Al * y_1[;
}
}
for(inti=0;i< 120;i++){
for(intj=0;j<120; j++){
x2[i] += A[il[i] * y_2[jl;

10/5/22

|kernel_mvt (mvt.c:4)
auto memory burst
auto memory burst
auto memory burst
Tloop 1 (mvt.c:15)

loop j (mvt.c:

auto memory burst

|

|

|

|

|

|

| auto memory burst
| auto memory burst
I

|

|

 —— . :'
Cache Hit Merlin Bottleneck Result
Checking Compiler Analysis Committing
/
Evaluator o
.~ *
=P Execution Flow .= <% Result Query

for ‘A’
for '

18)

for '
for '

for
for

‘A'(read) |
read

—

—

C Kernel w.
Optimized
Design Config.

}
}

void kernel_mvt(double x1[120], double x2[120],

double y_1[120], double y_2[120],
double A[120][120]) {

#pragma ACCEL PIPELINE flatten
for(inti=0;i<120;i++){

for(intj=0;j< 120; j++){
x1[i] += A[illi] * y_1[;

#pragma ACCEL PARALLEL FACTOR=15
for(inti=0;i<120;i++){
#pragma ACCEL PARALLEL reduction = x2 FACTOR=12
for(intj=0;j< 120; j++){
x2[i] += A[llil * y_2[jl;

33

Evaluation on Xilinx Vitis Library

» Tested on 33 kernels, each has 13.5 HLS optimization pragmas on average,
» AutoDSE achieves roughly the same performance (1.04x higher)

* Eliminated all HLS or Merlin optimization pragmas

» Both Merlin and AutoDSE keep and propagate dataflow and streaming pragmas
« Will rely on dataflow composition using TAPA (later)

@ Performance Ratio (AutoDSE/Vitis) M Pragma Reduction

1.2
60932,
1) M =) — B _ M —
0.8
Q
3
o 0.6
Q
&
0.4
0.2
o Wim e lle lle i e | lm |
Q Ky
\,‘;@ &b _@b &b) @6‘ \oo*' (oé §Q ({.,‘?' & .é‘\% & ¥ @6‘ & & & & 08" & _‘\o" Ny & F S
S FIFT & FFFHFEEE S S ELE FFLSE T
4 NS o & < & R
O - KO & ' O xS BN S o S G 2 S S 2
S ,b(,c é'g, 'bbb ‘o°° &S & & c,s be& &S & & &e, S o@& g

10/5/22

#Pragmas Reduced

Current Goal: More Extensive DSE Using Deep Graph Learning

* Review of the problem

Manual code Solut
« MVT kernel from Polybench olution space
* Two matrix-vetor multiplications « > 3Mdesign choices

void kernel_mvt(double x1[120], double x2[120],
double y_1[120], double y_2[120],
double A[120][120]) {

void kernel_mvt(double x1[120], double x2[120],

double y_1[120], double y_2[120], double A[120][120]) {
#pragma ACCEL PIPELINE autof__PIPE__LO}

Solution: RA__L2}
Adopt a deep graph learning model to automatically learn the program’s features

HDIdg ad P FITAALN =l i
for i=0;i<120;i++){ #prafinmta AOCEL TAE FALTOR=auto{__TILE__L1}
for (intj=0;j < 120; j++){ #pragma ACCEL PARALLEL FAILEORrawdFAPARR=11}
x2[i] += Allli] * y_2[jl; foolifibi F=00j k<L2POFH {
} #prm2fila-A@HELIPIPE2GNE auto{ _PIPE__L3}
} #pragma ACCEL PARALLEL reduction = x2 FACTOR=auto{__PARA__L3}
} for (intj=0;j < 120; j++){
}

} }x2[i] += Al * y_2(i;

Step 1: Create a Database for Training the Model

« Database generation:

* Adapting our previous work
+ AutoDSE [TODAES'22]

ﬁxglorer

Merlin
Compiler

"

Application 1
(C/C++) 77

HLS Tool

| kernel_mvt (mvt.c:
auto memory burst
auto memory burst
auto memory burst
Tloop 1 (mvt.c:15)
Tloop j (mvt.c:

|

|

|

|

|

| auto memory burst

| auto memory burst 'x1'(write)
| 'A'(read)
| 'x2"'(read)
|

|

|

auto memory burst
auto memory burst
Tloop 1 (mvt.c:28)

Tloop j (mvt.c:

Bottleneck

Analyzer /\

___________________________________ ‘ Result e v
i Commiting \\

Next Candidate

10/5/22

\

Local Search Next Candidate Y Training
_____________________________________ Database

Random Search Next Candidate J k_‘_/
a. /
Y
A rd
Application N []___,f’
(C/Cht --»| Explorer 36

Step 2: Represent the Program as a Graph

 Build the graph using the LLVM IR to capture lower-level instructions, i.e. closer to hardware

* Need to include both the program semantic and pragma flow in the graph

* Program semantic: control, data, and call flow
« Adapting the latest representation proposed for including these information (ProGraML [ICML'21])

void foo(int input[N]) {

#pragma ACCEL PIPELINE auto{__PIPE__L1}
#pragma ACCEL PARALLEL FACTOR=auto{__PARA__L1}
(inti=0;i<N;i++){
input[i] += 1;
}
} LLVM IR

* The graph is generated once per kernel and filled with different pragma values later on

for.cond:
%0 = load i32, i32* %i, align 4
%cmp = icmp slt i32 %0, 10

br i1 %cmp, label %for.body, label %for.end Graph generator

>

for.body: % >
1 = load i32, i32* %i, align 4

With pragma

placeholder @K

%idxprom = sext 132 %1 to i64

%arrayidx = getelementptr inbounds [1@ x i32],
[16 x i32]* %a, i64 ©, i64 %idxprom

%2 = load i32, 132* %arrayidx, align 4

%inc = add nsw i32 %2, 1
store 132 %inc, 132* %arrayidx, align 4
br label %for.inc

Step 3: Build a Predictive Model

« GNN-based model:

» A ssingle model across all applications

Function of neighboring nodes
and their edge embeddings

10/5/22

Encoder

Aggregation Feature

<
<

H Transformation

szt B

JeN()U{i} * I

A
|
|
I
1
|
|
I

» objective;

N

=2
(<1

Graph Neural Network Encoder : MLP Prediction L
to extract graph embedding Graph Embedding rediction Layers

objective;

trainable part

38

Design Space Exploration in GNN-DSE

* The trained model is replaced with the HLS tool for evaluating the design points

* The top M design points are evaluated with the HLS tool and added to the training
database for subsequent trainings

Graph
Generator

Design Space
Explorer

GNN-DSE'’s
Predictive

(I | Top M RN
objectives| Designs Q objectived !

Evaluator
(HLS tool)

—

Q.ED]] i
j objectiveg

Design Space

k Generator

Design Space Exploration

Training
Database

10/5/22

Model

Experimental Results

* Model’s performance

* Regression loss is in RMSE

Method

Speedup DSP LUT FF BRAM All Accuracy F1-score
M1 MLP-pragma (based on Kown, et al. MLCAD'20) | 3.28 0.59 0.31 0.25 0.34 476 0.52 0.42
M2 M1 + program context 2.94 0.47 0.24 0.13 0.16 3.94 0.78 0.40
M3 GNN-DSE 0.56 0.13 0.08 0.06 0.05 0.85 0.93 0.87
» Keep augmenting database until design space exploration (DSE) matches the best designs
* Initial database: W Initial DB: 0.71x [Final DB: 1.23x
4428 total configs / 1036 valid configs 8 ’
+ Final database: £ 2
4752 total configs / 1278 valid configs § 1
* More training examples lead to better accuracy i T e o e e e
g ’ « e «6‘"&“ & =

10/5/22

ge Q‘e S

Kernels

40

10/5/22

Experimental Results on Unseen Kernels

* DSE results on new kernels which were not in the database

* All new kernels dealing with matrix vector operations

But with different coding styles, input sizes, and loop trip counts from our database

« Baseline: AutoDSE after 21 h

* GNN-DSE could achieve about the same performance
From -2% and +5% difference with a mean of +1%

¢ With a maximum DSE time of 1 hour

» Adapting to domain shift in “Improving GNN-Based Accelerator Design Automation with Meta Learning [DAC’22]”

pragma # Design DSE + HLS # Explored
configs Runtime (mins)
bicg 5 3,536 18 3,536 69x
doitgen 6 179 16 179 11x
gesummy 4 1,581 16 1,581 79x
2mm 14 492,787,501 74 78,676 17x

41

Current Limitation of GNN-DSE - Domain Shift

* Experimental evidence

* Trained on a suite of 9 kernels
» Tested on 5 different kernels with only 20 labeled designs for each of the 5 new kernel
* Root mean square error (RMSE) on the hold-out test set of each new kernel

| ljacobi-1d [fdtd-2d _lgemm __|3mm___|gemver

GNN-DSE 4.2496 6.7047 7.5337 9.1584 44717

DSE speedup with respect to AutoDSE after 20 hours

| ljacobi-1d |fdtd-2d _lgemm __|3mm___|gemver

GNN-DSE 0.44x 0.06x 0.87x 0.30x 0.20x

« Accuracy drops when the testing kernels differ a lot from the training ones (domain shift), causing unsatisfactory DSE results.
Meanwhile, our goal is to design a method that works well on any real-world kernel.

10/5/22 42

Proposal: Use Transfer Learning (GNN-DSE-MAML)

I
gemm- gemm- = . /<A Hold-out for offline testing Error on the hold-out
aes [atax] [Flatad } [g] - nw . of the adapted model N test set:
trep
\ I : D . = Selected K designs to A i
5. o omain « adapt the model ' RMSE of util-DSP:
Kernels used for training Shift 3 . Stage 3: Offline RMSE of util-BRAM:
ﬂn(m,,‘,” New kernel Testing 7
aq 3 St 4: DSE
Mo,d_e_l_ Stage 1: Training Model Stage 2: Adaptation Model age . DSE speedup
(randomly initialized) (trained) (adapted) (online testing)
via MAML f
— :’netajlea/rn‘;ng)
---- learning/adaptation
9 VL
/Nﬂz
v/ 0
A

Model-Agnostic Meta-Learning (MAML) -- Finn et al. 2017.
10/5/22 43

GNN-DSE (top) vs GNN-DSE-MAML (bottom)

gemm- gemm-
[a‘”] [““”‘] [blocked] [ncubed]

\ J

Error on the hold-out
test set:

! RMSE of util-DSP:
Kernels used for training Stage 2: Offline RMSE of util-BRAM:
p(train) L 7
Model Stage 1: Training Model ptagcd. Dok DSE speedup
(randomly initialized) (trained) (online testing)
[} gemm- gemm- [] » - 7 Hold-out for offline testing Error on the hold-out
aes [atax] [Hlocked } [e] . nw . . of the adapted model test set:
\ Y J D o Selected K desions to £ util
6. omain a adapt the model RMSE of util-DSP:
Kernels used for training Shift S N Stage 3: Offline RMSE of util-BRAM:
peratn) New kernel Testing 7
Model Stage 1: Training Model Stage 2: Adaptation Model Stage 4: DSE DSE speedup
(randomly initialized) (trained) (adapted) (online testing)
via MAML f

10/5/22

44

Inspiration: K-shot Image Classification Using Meta-Learning

* Meta-learning:

¢ Compute a model that
can eventually
generalize across many
tasks

« with good data and
computation efficiency:

« Example:

* K-shot image
classification task:

* learn a classification
model that can quickly
adapt to a new class
with only K images from
that class

Training task 1

Support set

Query set

Training task 2

Support set

Test task 1

Support set

45

MAML for Training

Algorithm 1 Training procedure of GNN-Dsg-MAML

Require: p(P(7%"): distribution over kernels (programs) for
training
Require: «, f: step size hyperparameters

4 Or @ i Ao

5: Sample K datapoints D = {Xj, Y} from P;

6: Evaluate Vy.Lp, (fp) using D and L, in Equation 1

7 Compute adapted parameters with gradient descent: 6 =
0 —aVeLep,(fp)

8: Sample datapoints D = {x),y(D} from P; for the meta-
update

9: end for

10: Update 0 « 60— Vg Xp,p(p) Lp,(fo;) using each D; and
Ly, in Equation 1

11: end while

10/5/22

— meta-learn
9 ---- learning/ac

VL

stencil AN

A batch of kernels 46

MAML for Adaptation

— meta-learning

6 ---- learning/adaptation
VL

5: Sample K datapoints D = {Xj, Yj} from P; VLQ .
6: Evaluate Vg .Lp, (fy) using D and Ly, in Equation 1 v E 1 3 - 93
7: Compute adapted parameters with gradient descent: 6 =)\ Vogg

0 —aVeLep,(fp) - \
8: Sample datapoints D = {x),y(D} from P; for the meta- N *

update ¢ 92

Only K labeled designs

10/5/22 47

Experimental Results - Offline Testing

« K=20 for adaption

« Adaptation is necessary for the unadapted model to obtain lower error

* FineTune: Naive adaptation using the regular objective function

* Under 4 out of 5 kernels, MAML leads to a more accurate adapted model.

Method jacobi-1d fdtd-2d gemm 3mm gemver
GNN-DSe-UNADAPTED 4.2496 6.7047 7.5337 9.1584 4.4717
GNN-DsSe-FINETUNE 3.2611 4.0831 1.7342 6.2930 3.1600
GNN-Dse-MAML 2.3898 2.4912 2.1116 5.9670 3.0303

10/5/22

48

Experimental Results - DSE

« MAML-based adaptation achieves great performance for 3 new kernels

« 3mm: >17 trillion design candidates that AutoDSE got to explore only 149 of them after
20 hours since it relies on the HLS tool for evaluating each candidate

* GNN-DSE-MAML yields a significant speedup for 3mm compared to AutoDSE

Method

jacobi-1d fdtd-2d gemm 3mm gemver
GNN-DSE-UNADAPTED 0.44Xx 0.06X% 0.87X% 0.30X% 0.20X
GNN-DSE-FINETUNE 0.54% 0.04X% 0.18% 1.00X% 0.22X
GNN-DSE-MAML 1.00x TO 1.21X 64.52x TO

10/5/22

TO: Timed Out

49

Experimental Results - DSE

* For ftdt-2d and gemver, the MAML results lead to Timed Out

« The MAML-based model uses high degree of parallelization for each section of the loop
nests, overwhelming the HLS tool.

» Such cases were not covered in the K sampled samples for adapting the model.

Method jacobi-1d fdtd-2d gemm 3mm gemver
GNN-DSE-UNADAPTED 0.44X% 0.06X 0.87X 0.30X% 0.20X%
GNN-DSE-FINETUNE 0.54% 0.04X% 0.18% 1.00X% 0.22X
GNN-DSE-MAML 1.00x TO 1.21X% 64.52x TO

TO: Timed Out

10/5/22 50

AutoDSE and GNN-DSE are Open-source

« https://github.com/UCLA-VAST/GNN-DSE * https://github.com/UCLA-VAST/AutoDSE

Scan me! Scan me!

10/5/22 51

https://github.com/UCLA-VAST/GNN-DSE
https://github.com/UCLA-VAST/AutoDSE

How to Integrate Different Approaches?

! . Caﬁ:l/ Spark Halide others Support domain specific languages !
ensoriiow ¢

L LRI e =

! Frontend Frontend Frontend Frontend) , !

! | Compiler || Compiler || Compiler || Compiler e Halide [FPGA’'20] !

————— Ty Sy=yyiryy =yreyy ey ey gy

Intermediate !
Representation :1. Architecture Guided Optimization: Based on common computation patterns

FPGA Fabric

F------- - - - - - - - ——*— il o —
: Microarchitecture sy |l

| Optimization - ===k

: \\jB - P;ET--’ PlET“P P1E1-4 Pil:T ::’En::‘:i-:

! [Others Matched e L A e 2 _ o e |
: Rz Pl [DAS)Z??”E;’?;TBIWB] [ICSCt:rE])C!I18] Composable, Parallel and Pipeline (CPP)
T ey --- [DAC ‘18]

Variable loop bounds [ICCAD ‘18]

|
|
: 2. Apply ML or other optimization techniques for general applications (GNN-DSE) [DAC’22]
|
: 3. Compose the entire design using latency-insensitive dataflow task [FCCM’21 & FPGA’21 & 21]

FPGA Accelerator

|
|
|
!
|
1
|
|
i | | o v | I
|
|
|
|
|
1
|
|
|
1
1

10/5/22 52

HeteroCL Programming Infrastructure [FPGA'19]

* Inspired by Halide: Separate program specification and optimization (scheduling)
* Flexible: Mixed declarative & imperative programming
* Portable: Clean decoupling of algorithm & hardware customizations

+ Efficient: Mapping to high-performance spatial architecture templates

. Processors
High-level HeteroCL
DSLs \N
Algorithm Spec.
Keras (declarative + imperative)
N CPU + Custom Accelerators

PYTSRCH |$
. ~7 | Compute Customization
Halide

Data Type Customization

Memory Customization

1075722 Open-source: https://github.com/cornell-zhang/heterocl

53

HeteroCL in a Nutshell

HeteroCL code

Corresponding C code
c = hcl.reduce_axis(0, 3) (based on TVM) for (|r?t y=0;y <N;y+t)
A|gorithm< out = hcl.compute(N, N), for (”'_‘t x = 0; X <N; x++)
lambday, x: for (intr=0;r<3; r++)
hcl.sum(image[x+r, y+c]*kernellr, c], for (intc=0;c<3; c+4)
axis=[r, c])) out[x, y] += image[x+r, y+c] * kernel[r, c]
\ ’ Unroll
inner loops
~ 100
Custom s = hcl.create_schedule() < 80
>
Compute s[out].unroll([r,c]) o' 60
S 40
8 20
Custom foriin range(2, 8): <o
Data Type 7 A AR 2 4 6 8
s.quantize([out], Fixed(i, i-2)) i ebuffer
Custom linebuf = s[image].reuse_at(out, out.y) —

Memory winbuf = s[linebuf].reuse_at(out, out.x)

- LH

N
[]

Y.-H. Lai, et al., HeteroCL: A Multi-Paradigm Programming Infrastructure window buffer kernel out

10/5/22 for Software-Defined Reconfigurable Computing, FPGA’2019 Best Paper Award

HeteroCL: Mapping to Spatial Architecture Templates

» Systolic Array

matrix multiply kernel
out = hcl.compute(N, N), —
lambday, x: sum(A[x, k] * B[k, y]), axis=k)

s[out].systolic()

« Stencil Architecture

.

-] g [L] g

jacobi kernel ',__F'i‘l WIJ {ml_ i

out = hcl.compute(N, N), — Copi®> e [,F_W_l- E T
lambda'y, x: IS e —

(in[y,x-1]+ in[y-1,x] + in[y,x] + in[y,x+1] + in[y+1,x])/5)) | PE ~@utpud

. L o

s[out].stencil() : inplements FIFO and | 1 P |- Gutpud

10/5/22 55

One More Question:

Now | am good at using (enhanced) HLS, how to deal with (low) clock
frequency and (long) compilation time from downstream physical synthesis ?

Modern FPGAs are Large and Complex

 Large IPs with pre-determined location

 FPGAs are increasingly large
* Multiple dies integrated together
* High delay penalty for die-crossing

Xilinx Alveo Xilinx Alveo
U250 U280

57

Modern FPGAs are Large and Complex

T T

* FPGAs are increasingly large Die boundarie

* Multiple dies integrated together \
* High delay penalty for die-crossing

 Large IPs with pre-determined location

Xilinx Alveo Xilinx Alveo
U250 U280

58

Modern FPGAs are Large and Complex

DDR controllers

 FPGAs are increasingly large Die boundarie -
« Multiple dies integrated together S\\ /
 High delay penalty for die-crossing i //
 Large IPs with pre-determined location]
) L

Peripheral IPs (e.g.,
PCle)

Xilinx Alveo Xilinx Alveo
U250 U280

59

Modern FPGAs are Large and Complex

DDR controllers

 FPGAs are increasingly large Die boundarie -
« Multiple dies integrated together S\\ /
 High delay penalty for die-crossing i //
 Large IPs with pre-determined location]
) L

Peripheral IPs (e.9., HBM Controller
PCle)

Xilinx Alveo Xilinx Alveo
U250 U280

60

Modern FPGAs are Large and Complex

DDR controllers

 FPGAs are increasingly large Die boundarie <
N\
« Multiple dies integrated together S\\ /
* High delay penalty for die-crossing \ //
 Large IPs with pre-determined location]
« HLS has limited consideration of those Z
physical barriers Peripheral IPs (e.9., HBM Controller
PCle)
Xilinx Alveo Xilinx Alveo

U250 U280

61

AutoBridge [FPGA’'21 Best Paper Award]

« Add extra pipeline stages to long interconnects

* Couples floorplanning with HLS pipelining Conventional Placement
. . . Original
* Global optimization to assure correctness Approach p A \
« Automate latency-insensitive design at the HLS level Coarse-grain)
...................... HLS aanan Floorplanning annusl Detall Placement snssaname

* Improve average frequency from 150 MHz to
297 MHz over 43 test cases. AutoBridge A4
Floorplan-Guided HLS

[FPGA'21] AutoSA: A polyhedral compiler for high-performance
systolic arrays on fpga

[FPGA'22] Accelerating SSSP for Power-Law Graphs

[FPGA'22] Sextans: A Streaming Accelerator for General-Purpose
Sparse-Matrix Dense-Matrix Multiplication

[DAC'22] Serpens: A High Bandwidth Memory Based Accelerator
for General-Purpose Sparse Matrix-Vector Multiplication

Insert pipeline registers
after floorplanning to fix
critical paths

Case Study

» Gaussian Elimination, 8 configurations

Opt: avg. 334 MHz (1.4X) Opt: avg. 335 MHz (1.5X)

__400

DDR-2

T 300 ,,,,&i’-’,,’};t;x\,,',i,,, D x-':f':r':.-;,-x~ ______ Pas X

= 200 = b

g 100 =

L 0 L
12x12 16x16 20x20 24x24 12x12 16x16 20x20 24x24
U250 -.@ - Original -~ - AutoBridge U280

Default: avg. 245 MHz

Difference in Resource Utilization
o LUT: -0.14%
o FF:-0.04%
o BRAM: -0.03%
o DSP: +0.00%

Default: avg. 223 MHz

Default

Comparison of the 24x24 Design on U256

AutoBridge

Latency-Insensitive Designs Helped Compile Time as Well!

Phase 1: Phase 2: Phase 3:
Partitioning Parallel Compilation Stitching
(Fully automated) (without an Overlay)
) -
Clock Source @ @ (—D(_ @
; ® He®
5B e é
uly
Input dataflow design Partition the design into islands Islands and All islands stitched together
in C/C++ placed & routed in parallel & Inter-island routing

RapidStream [FPGA ‘22 Best Paper Award]

64

450
400
350
300
250
200
150
100

50

Experimental Result

» Tested on 6 large scale dataflow designs targeting Xilinx U250 FPGA with 4 SLRs

(dies)

Up to 1.3X frequency improvement

m RapidStream mVivado + Pipelined RTL = Vivado + Orig RTL

CNN LU MTTKRP MM 3D Stencil 2D Stencil

Frequency (MHz)

20

Distribute to 4 Xeon servers, each with 56 cores
Divide the FPGA into 32 islands (8 rows, 4 columns)
5-7X speedup (from C++ to fully routed checkpoint)

m RapidStream mVivado + Pipelined RTL = Vivado + Orig RTL

CNN LU MTTKRP MM 3D Stencil 2D Stencil

65
Runtime (hour)

Use Overlay for Even Faster Compilation: OverGen [MICRO'22]

s DSAGEN

I A
| SoC Integration byﬁCH”p
| DRAM Peripherals
: LLC
I Network-on-Chip
| RISCV RISCV
. CPU CPU
Vv v
== Acce =E Acce

\ £

Speedup o/ HLS

Compilation Time
106 - —

crs

gemm
stcl-2d
ellp.

gmean

Relative to FPGA Reconfig.

. Reconfig Time

10°
10
10°
10
10
10
10! ”

e
Y

=S

[V

—

[}

3d

stcl
gem
stcl-2
ell
gmea

10,000x faster 100,000x faster

in re-compile

in reconf.

Composing Large Dataflow Designs Using TAPA

* TAPA programs explicitly decouple communication and computation
« Computation => compiled by Vitis HLS / AutoSA / AutoDSE / ...

« Communication => generated by TAPA

HLS AutoBridge

Pipelining Integration

@ IZD Floorplanning

Synth/Place/Route

Synth/Place/Route

HLS
|:> B

Compute Logic Generation
(with 3rd Party HLS tool)

HLS ~ [>

> Synth/Place/Route

Synth/Place/Route

AV VAR VAR V4

Parallel Implementation

Example: FlexCNN Using TAPA

* FlexCNN: an end-to-end automated DNN synthesis framework

* From ONNX to bitsream on FPGAs

Lines of Code
Code Generation

FlexCNN without TAPA FlexCNN with TAPA

Reader 1 1,046 Template-based
Reader 2 446 Template-based Fails Placement & Route Achieves up to 266 MHz
Systolic Array 4,801 Automatic
Pool 254 Template-based f VYV V) P > weight FIFO lane
Upsample 221 Template-based [pe] %‘ | — feature map FIFO lane
) [72]
Concat 350 Template-based . _‘ | ‘ &
Add 314 Template-based g Lo : 2187 - & 5
i) o T
Act & BN 320 Template-based o , N § N < [3 [2
Writer 824 Template-based N oo « _
Top 6,292 Automatic § N Versatile SA y § — \/ input-feed module
, & —‘ r | > weight-feed module
Total 14,868 out-collect module

10/5/22 Large dataflow design composed using TAPA 68

Concluding Remark 1

» | am encouraged by the progress/results on democratizing accelerator
designs and customized computing

* It takes a community-wide effort

* All our tools are open-sourced, and FPGA vendors are more open as well
* One-API from Intel

« Merlin from AMD/Xilinx (after acquisition of Falcon Computing)

* Increasingly interested in using MLIR as an integration point

Concluding Remark 2

* Important for the architecture community to have a rapid prototyping flow

* From Idea to Silicon in days, not months/years

* Concerned with some accelerator evaluation methodology
» "We evaluate XXX using a C++-based cycle-level simulator.”
 Does it consider
* reduced memory bandwidth due to short burst length?
* interconnect network size and latency from HBM ports to logic elements?
* interconnect delays ...?

« Has it been validated against any real silicon (FPGA or ASIC)?

10/5/22

70

Concluding Remark 3

* | had the pleasure working with many collaborators in other application domains.

Prof. Yizhou Sun
(UCLA)

Tad Blair Yizhou Sun
Real-time neural signal processing Graph similarity computation

Alex Bui and William Hsu
Low-dose CT reconstruction

* It's time to enable domain experts to design their own accelerators!

* The deep learning community has done a much better job - "every” domain expert can train
complex DL models

» Can we catch up? Think about broader impact!

10/5/22

71

Final Remark

No doubt we are in an exciting era for
computer architecture

We want to every (serious) software
programmer to participate

* Not just architects

Build his/her own customized accelerators
on field-programmable fabrics

¢ On premise or in the cloud

| hope that many of you can join this effort

10/5/22

turing lecture F

Innovations like domain-specific hardware,
enhanced security, open instruction sets, and
agile chip development will lead the way.

I BY JOHN L. HENNESSY AND DAVID A. PATTERSON

A New Golden
Age for
Computer
Architecture

2018 Turing Award Lecture

72

A Story ..

wcC UPPER LEVEL

H L S/ Cafe LUNCH * Q: Does everyone here do
High-Level Synthesis?
+ Full salad bar M - F,

+ Soups & chilis : -3,
+ Hot stations (Internationail, [l:30am 2:30pm * A: What do you mean? We are
Plant Forward, American BBQ) Wide selection of diverse, all from Harvard Law School.

+ Deli delicious & inspired items
+ Pizza

* Bk BoBes

* Baked goods & pastries
* Grab n' go salads & sandwiches
+ Grab n' go yogurt & fruits @ @ @

73

Acknowledgements:
ESF, JUMP/CRISP, and CDSC Industrial Partners

* Multi-year efforts by many students, postdocs, and collaborators

— T I

Prof. Yizhou Sun Prof. Miryung Kim Prof. Zhiru Zhang Prof. Peipei Zhou Prof. Vivek Sarkar

Prof. Tony Nowatzki (UCLA) (ucLa) (Cornell Univ.) (Univ. of Pittsburgh) (Georgia Tech)

(UCLA)

.hh i)

Yunsheng Bai

Hao Yu
(UCLA/Falcon)

Jie Wang Peng Wei

Weikang Qiao (UCLA) Yuan Zhou (Cornell) Zhengrong Wang
(UCLA) (UCLA) (UCLA)

(UCLA)

Yuze Chi (UCLA)

Atefeh Sohrabizadeh Sihao Liu Zhe Chen Jason Lau Suhail Basalama Licheng Guo Jian Weng
(UCLA) (UCLA) (ucLa) (UCLA) (UCLA) (UCLA) (UCLA)

Thank Youl!

