
Democratizing Customized Computing

Jason Cong
Volgenau Chair for Engineering Excellence, UCLA Computer Science

Director, Center for Domain-Specific Computing (CDSC)
https://vast.cs.ucla.edu/people/faculty/jason-cong

https://vast.cs.ucla.edu/people/faculty/jason-cong

From Parallization to Customization

10/5/22 2

2009 NSF Expeditions in Computing Award

… to look beyond parallelization and focus on domain-specific
customization to bring significant power-performance efficiency …

Parallelization

Customization

Adapt the architecture to
Application domain

Original source: Shekhar Borkar, Intel

Customized Computing has been Our Research Focus Since 2009

10/5/22 3

IEEE Design & Test, 2011
Proceedings of IEEE, 2019Synthesis Lectures on

Computer Architectures, 2015

Successful Examples of Customization

• Example:
• Google TPU (Tensor Processing Unit)

• First version: 2014

• Revised TPU (2017), for training and inference
• DRAM, 2 DDR3 -> GDDR5, 34GB/s -> 180GB/s

• 200x perf/W of Haswell CPU, 70x perf/W of K80 GPU

Based on data in [ISCA2017]

• Limitations:
• Too costly for individuals (or small companies) to design

• Take too much time to build

10/5/22 4

Google TPU: In-Datacenter Performance Analysis of a Tensor
Processing Unit, ISCA 2017

331 mm2 (< CPU: Haswell 18 core, 662 mm2)
75 TDP Watts (< CPU: 145)
91.8 Peak TOPS/chip (CPU: 2.6 TOPS)

Customized Computing on FPGAs:
Example: Scalable Sorting [ISCA 2020]
• Bonsai: Adaptive merge tree sort solution (compute and I/O optimal)

• Optimized configuration of merge sort kernel for different memory configurations
• Best DRAM-scale sorting performance
• Scale to TB sorting via reconfiguration

10/5/22 5

phase 1: 4 trees
(𝑝 = 8, 𝑙 = 64) in
pipeline

phase 2: 1 many-
leaves tree (𝑝 =
8, 𝑙 = 256)

SSD/FLASH

FPGA

I/O

I/O

DRAM

FPGA

Bank 1 Bank 2 Bank 3 Bank 4

1st 2nd 3rd 4th

I/O I/O

Reprogram to switch
from phase 1 to phase
2

DDR DRAM

Load unit

FPGA Tree throughput: 𝑝 elements/cycle

Tree leaf
number: 𝑙

DRAM
bandwidth

Tree throughput
𝑝

Tree leaf number
𝑙

16 GB/s 8 128

32 GB/s 16 128

64 GB/s 32 64

Optimal configuration for different available
DRAM bandwidth when sorting 32-bit integers

Use of FPGAs trade-off performance for design cost, flexibility, and time-to-silicon

Power of Customization (Domain-Specific
Accelerators)

10/5/22 6

Most significant on ASIC (if one can afford cost and time)
Still very substantial speedup on FPGAs despite its overhead CACM July 2020

Question:
Can Every Programmer Easily Design DSAs?

Current Answer: Yes and No

10/5/22 7

Or
Can Every Serious Programmer Easily Design DSAs?

It’s Natural to Think about High-Level Synthesis (HLS)?

• Example: xPilot (UCLA 2006) -> AutoPilot (AutoESL)
-> Vivado HLS (Xilinx 2011-)
• Platform-based C to RTL synthesis
• Synthesize pure ANSI-C and C++, GCC-compatible

compilation flow leveraging LLVM framework
• Full support of IEEE-754 floating point data types &

operations
• Efficiently handle bit-accurate fixed-point arithmetic
• SDC-based scheduling
• Automatic memory partitioning

• …

QoR matches or exceeds manual RTL for many designs

TCAD April 2011 (keynote paper) “High-Level Synthesis
for FPGAs: From Prototyping to Deployment”

10/5/22 8

Significant progress in the past decade

C/C++/SystemC

Timing/Power/Layout
Constraints

RTL HDLs &
RTL SystemC

Platform
Characterization

Library

FPGA
or ASIC blocks

=

Compilation &
Elaboration

Code transformation & opt

Behavioral & Communication

Synthesis and Optimizations

AutoPilotTM

C
om

m
on Testbench

User Constraints

E
S

L S
ynthesis

Design Specification

void kernel_mvt(double x1[120], double x2[120],
double y_1[120], double y_2[120],
double A[120][120]) {

for (int i = 0; i < 120; i++) {
for (int j = 0; j < 120; j++) {
x1[i] += A[i][j] * y_1[j];

}
}

for (int i = 0; i < 120; i++) {
for (int j = 0; j < 120; j++) {

x2[i] += A[j][i] * y_2[j];
}

}
}

Example code
• MVT kernel from Polybench

• Two matrix-vetor multiplications

9

Good News: Not Difficult to Create Circuits from C/C++ Using HLS

Challenge 1: Synthesized Circuit May Not Have Good Performance

• Not surprising if you have done multi-core programming – the same problem!

• Need to add pragmas (microarchitecture hints).

void kernel_mvt(double x1[120], double x2[120],
double y_1[120], double y_2[120],
double A[120][120]) {

#pragma ACCEL PIPELINE flatten
for (int i = 0; i < 120; i++) {
for (int j = 0; j < 120; j++) {

x1[i] += A[i][j] * y_1[j];
} }

#pragma ACCEL PARALLEL FACTOR=15
for (int i = 0; i < 120; i++) {

#pragma ACCEL PARALLEL reduction = x2 FACTOR=12
for (int j = 0; j < 120; j++) {
x2[i] += A[j][i] * y_2[j];

} }
}

void kernel_mvt(double x1[120], double x2[120],
double y_1[120], double y_2[120],
double A[120][120]) {

for (int i = 0; i < 120; i++) {
for (int j = 0; j < 120; j++) {
x1[i] += A[i][j] * y_1[j];

}
}

for (int i = 0; i < 120; i++) {
for (int j = 0; j < 120; j++) {

x2[i] += A[j][i] * y_2[j];
}

}
}

122x speedup

Optimized Code

Example code: MVT kernel from Polybench After proper pragma insertions

When targeting FPGA, 13x slower
than running on a single-core CPU 10

Based on the Merlin Compiler, open-sourced by AMD/Xilinx

void kernel_mvt(double x1[120], double x2[120],
double y_1[120], double y_2[120],
double A[120][120]) {

#pragma ACCEL PIPELINE flatten
for (int i = 0; i < 120; i++) {
for (int j = 0; j < 120; j++) {

x1[i] += A[i][j] * y_1[j];
} }

#pragma ACCEL PARALLEL FACTOR=15
for (int i = 0; i < 120; i++) {

#pragma ACCEL PARALLEL reduction = x2 FACTOR=12
for (int j = 0; j < 120; j++) {
x2[i] += A[j][i] * y_2[j];

} }
}

void kernel_mvt(double x1[120], double x2[120],
double y_1[120], double y_2[120],
double A[120][120]) {

for (int i = 0; i < 120; i++) {
for (int j = 0; j < 120; j++) {
x1[i] += A[i][j] * y_1[j];

}
}

for (int i = 0; i < 120; i++) {
for (int j = 0; j < 120; j++) {

x2[i] += A[j][i] * y_2[j];
}

}
}

void kernel_mvt(double x1[120], double x2[120],
double y_1[120], double y_2[120],
double A[120][120]) {

#pragma ACCEL PIPELINE auto{__PIPE__L0}
#pragma ACCEL TILE FACTOR=auto{__TILE__L0}
#pragma ACCEL PARALLEL FACTOR=auto{__PARA__L0}
for (int i = 0; i < 120; i++) {

#pragma ACCEL PIPELINE auto{__PIPE__L2}
#pragma ACCEL PARALLEL FACTOR=auto{__PARA__L2}

for (int j = 0; j < 120; j++) {
x1[i] += A[i][j] * y_1[j]; } }

#pragma ACCEL PIPELINE auto{__PIPE__L1}
#pragma ACCEL TILE FACTOR=auto{__TILE__L1}
#pragma ACCEL PARALLEL FACTOR=auto{__PARA__L1}
for (int i = 0; i < 120; i++) {

#pragma ACCEL PIPELINE auto{__PIPE__L3}
#pragma ACCEL PARALLEL FACTOR=auto{__PARA__L3}

for (int j = 0; j < 120; j++) {
x2[i] += A[j][i] * y_2[j]; } } }

122x speedup

Optimized CodeExample code: MVT kernel from Polybench
Solution space
• > 3M design choices

When targeting FPGA, 13x slower
than running on a single-core CPU

11

Challenge 2: # Possibilities for Pragmas Insertion Can Be Very Large!

Search space by AutoDSE

Overview of Our Approach

10/5/22 12

HeteroCL [FPGA’19] / MLIR [https://mlir.llvm.org/]

Frontend
Compiler

Frontend
Compiler

Microarchitecture
Optimization

FPGA Accelerator

Intermediate
Representation

Caffe/

Tensorflow
Spark Halide others

Frontend
Compiler

Frontend
Compiler

Support domain specific languages
● Spark [DAC ‘18]
● Caffe [DAC ‘17]
● Halide [FPGA’20]

1. Architecture Guided Optimization: Based on common computation patterns

Composable, Parallel and Pipeline (CPP)
[DAC ‘18]

Variable loop bounds [ICCAD ‘18]

Stencil
[ICCAD ‘18]

2. Apply ML or other optimization techniques for general applications (GNN-DSE) [DAC’22]

3. Compose the entire design using latency-insensitive dataflow task [FCCM’21 & FPGA’21 & 21]

Matched
Patterns

Others
Patterns Systolic Array

[DAC ‘17, ICCAD ‘18]

Goal: “Democratize” accelerator designs for customized computing

Example of Architecture-Guided Optimization: AutoSA

10/5/22 13

Wang, Jie, Licheng Guo, and Jason Cong. "AutoSA: A Polyhedral Compiler for High-Performance Systolic Arrays on FPGA."
FPGA’2021

#pragma scop
for (int i = 0; i < M; ++i)

for (int j = 0; j < N; ++j) {
S0: C[i][j] = 0;

for (int k = 0; k < K; ++k)
S1: C[i][j] += A[i][k] * B[k][j];

}
#pragma endscop

Input: C code

AutoSA

Output: Systolic array design in HLS C

Systolic Array Advantages

10/5/22 14

Parallelism Locality

Performance Energy Efficiency

PE PE PE

PE PE PE

PE PE PE

Many Accelerators are Based on Systolic Arrays

15

Google TPU Tesla Self-Driving Chip Amazon Infrentia

Systolic Array Design Stories from Industry

10/5/22 16Figure source: Hongbo Rong, "Programmatic control of a compiler for generating high-performance spatial hardware“, arXiv preprint arXiv:1711.07606 (2017).

Overview of AutoSA Compilation Flow

10/5/22 17

C

Model Extraction

Legality Check

Computation
Management

Communication
Management

Code Generation

Xilinx
HLS C

Intel
OpenCL

Mentor
Catapult
HLS C

Polyhedral IR

Auto Tuner

● Extract polyhedral model from the source code.

● Examine if the target program can be mapped to
systolic array.

● Construct and optimize PE arrays
○ Space-time mapping, array partitioning, latency hiding,

vectorization
● Construct and optimize I/O network

○ I/O network analysis, double buffering, data-packing

● Generate target hardware code

● Search for optimal
design configurations

Challenge: Large Design Space & Many Optimization
Opportunities

Example: Matrix Multiplication

18

A CX =B1024

1024 1024

Dataflows types(6) X Dataflow
Configurations(O(2^40))

A Closer Look at Computation Management

• Space-time mapping: transforming the program to a systolic array with space-time mapping.

10/5/22 19

Input Code of MM:
for (int i = 0; i < I; i++)
for (int j = 0; j < J; j++)
for (int k = 0; k < K; k++)
C[i][j] += A[i][k] * B[k][j];

Note: Initialization of C omitted for brevity.

Space-Time Transformation: [𝑖, 𝑗]

for (int i = 0; i < I; i++)
for (int j = 0; j < J; j++)
for (int k = 0; k < K; k++)
C[i][j] += A[i][k] * B[k][j];

space

time

PE PE

PE PE

* The generated systolic array:

𝑖
𝑗

A

B

⋯

⋯

⋯ ⋯ ⋯

A Closer Look at Computation Management
• Array partitioning: partitioning the array into smaller sub-arrays to fit limited on-chip resource.

10/5/22 20

Space-Time Transformation: [𝑖, 𝑗]

for (int i = 0; i < I; i++)
for (int j = 0; j < J; j++)
for (int k = 0; k < K; k++)
C[i][j] += A[i][k]* B[k][j];

space

time

PE PE

PE PE

* The generated systolic array:

𝑖
𝑗

A

B

⋯

⋯

⋯ ⋯ ⋯

for (int i.0 = 0; i.0 < I/T_I1; i.0++)
for (int j.0 = 0; j.0 < J/T_J1; j.0++)
for (int k.0 = 0; k.0 < K/T_K1; k.0++)
for (int i.1 = 0; i.1 < T_I1; i.1++)
for (int j.1 = 0; j.1 < T_J1; j.1++)
for (int k.1 = 0; k.1 < T_K1; k.1++)
C[...] += A[...] * B[...];

Array Partitioning

Sub-array loops

Array partitioning loops

* The generated systolic array:

PE PE

PE PE

A

B

𝑇_𝐼1 = 2

𝑇_𝐽1 = 2

A Closer Look at Computation Management
• Latency hiding: permuting parallel loops inside to hide computation latency.

10/5/22 21

Latency Hiding
for (int i.0 = 0; i.0 < I/T_I1; i.0++)
for (int j.0 = 0; j.0 < J/T_J1; j.0++)
for (int k.0 = 0; k.0 < K/T_K1; k.0++)
for (int i.1 = 0; i.1 < T_I1/T_I2; i.1++)
for (int j.1 = 0; j.1 < T_J1/T_J2;j.1++)
for (int k.1 = 0; k.1 < T_K1; k.1++)
for (int i.2 = 0; i.2 < T_I2; i.2++)
for (int j.2 = 0;j.2 < T_J2;j.2++)
C[...] += A[...] * B[...];

Latency hiding loops

A Closer Look at Computation Management

• SIMD vectorization: vectorizing computation to amortize the PE control overheads.

10/5/22 22

for (int i.0 = 0; i.0 < I/T_I1; i.0++)
for (int j.0 = 0; j.0 < J/T_J1; j.0++)
for (int k.0 = 0; k.0 < K/T_K1; k.0++)
for (int i.1 = 0; i.1 < T_I1/T_I2; i.1++)
for (int j.1 = 0; j.1 < T_J1/T_J2; j.1++)
for (int k.1 = 0; k.1 < T_K1/T_K2; k.1++)
for (int i.2 = 0; i.2 < T_I2; i.2++)
for (int j.2 = 0; j.2 < T_J2; j.2++)
for (int k.2 = 0; k.2 < T_K2;k.2++)
C[...] += A[...] * B[...];

SIMD loop

SIMD Vectorization

What about Data Communication?

10/5/22 23

• Polyhedral model supports precise data dependence analysis.

Example: I/O network generation based on the polyhedral model

for (int i = 0; i < I; i++) // space
for (int j = 0; j < J; j++) { // space

for (int k = 0; k < K; k++) // time
S1: C[i][j] = C[i][j] + A[i][k] * B[k][j];

}

𝑹𝑨𝑹𝑫𝟏 𝑹𝑨𝑹𝑫𝟐𝑹𝑨𝑾𝑫𝟑𝑾𝑨𝑾𝑫𝟒

Dependence Dependence Type Array Access Dependence Distance I/O Group

D1 Read (RAR) A[i][k] (𝟎, 𝟏, 0) g1

D2 Read (RAR) B[k][j] (𝟏, 𝟎, 0) g2

D3 Flow (RAW) C[i][j] (𝟎, 𝟎, 1) g3

D4 Output (WAW) C[i][j] (𝟎, 𝟎, 1) g4

We omit the statement of array initialization for brevity.

PE

PE

PE

PE

𝑖
𝑗

Use Dependency to Construct Communication Network

10/5/22 24

• Polyhedral model supports precise data dependence analysis.

Example: I/O network generation based on the polyhedral model

Dependence Dependence Type Array Access Dependence Distance I/O Group

D1 Read (RAR) A[i][k] (𝟎, 𝟏, 0) g1

D2 Read (RAR) B[k][j] (𝟏, 𝟎, 0) g2

D3 Flow (RAW) C[i][j] (𝟎, 𝟎, 1) g3

D4 Output (WAW) C[i][j] (𝟎, 𝟎, 1) g4

We omit the statement of array initialization for brevity.

g1
PE

PE

PE

PE

D
RA

M PE

PE

PE

PE

D
RA

M PE

PE

PE

PE

g2 g4

D
RA

M

𝑖
𝑗

𝑖
𝑗

𝑖
𝑗

Auto-Tuning in AutoSA (More in Late Slides)

10/5/22 26

Generality

Search Time

Input:
A SCoP program with rectangular iteration domains.

Evolutionary Search

Mathematic Programming-
Based Optimizer

Odyssey

< 1 minute

Input:
An arbitrary SCoP program.

Exhaustive Search with
Pruning

minutes to hours

Benchmark Examples and Productivity Gain

10/5/22 27

Complex systolic Array from C-to-Silicon in a day!
Recall that common industry practice requires 4-18 months.

Performance

10/5/22 28

AutoSA is Open-Sourced

• Github: https://github.com/UCLA-VAST/AutoSA

• Document: https://autosa.readthedocs.io/en/latest/

10/5/22 29

https://github.com/UCLA-VAST/AutoSA
https://autosa.readthedocs.io/en/latest/

Some Architecture Insights from AutoSA

10/5/22 30

• Example: 1024x1024x1024 GEMM

• Common wisdom: dimensions of a systolic array be divisors of the
problem size.
• Timeloop ISPASS ’19 (MIT, Nvidia, Stanford),

• dMazeRunner TECS ’19 (Ariazon State Univ., Yonsei Univ., Intel)

• Interstellar ASPLOS ’20 (Stanford, Tsinghua)

• Non-divisor solution can be 50% faster

• Not necessarily!

Non divisor Divisor SA
Candidate 1

Wasted
FPGA fabric
(5,120 DSPs)

Cannot fit
FPGA fabric

(10,240 DSPs)

Divisor SA
Candidate 2

Non-divisor SA

Fully utilizes
FPGA fabric
(8,320 DSPs)

SA Size
(Cols,Rows, SIMD) DSPs Frequency Throughput

GFLOP/s

32x4x8 5120 257 MHz 506.71

16x13x8 8320 243 MHz 764.46

Some More Architecture Insight using AutoSA

• Common wisdom: Minimize off-chip communication. E.g
• Marvel Arxiv ’20 (Georgia Tech, Nvidia),
• Chen et al. HPCA ’20 (UCAS, Tsinghua Univ.)

• Again, not necessarily!

10/5/22 31

SA Size
(Cols,Rows, SIMD)

Minimization
Goal DSPs Frequency Throughput DRAM

Traffic
CTC

(FLOP/byte)
Effective

Bandwidth

32x4x8 DRAM Traffic 5120 282 MHz 496.16 GFLOP/s 16.7 MB 128 4.3 GB/s

16x13x8 Latency 8320 243 MHz 764.46 GFLOP/s 80.3 MB 26.7 36.5 GB/s

What about General C/C++ Programs?

10/5/22 32

#pragma ACCEL parallel
- Run multiple loop iterations in parallel (instruction/task-level)

#pragma ACCEL pipeline
- Run multiple loop iterations in pipeline (instruction/task-level)

#pragma omp parallel for num_threads(16)
for (int i = 0; i < N; ++i) {
c[i] += a[i] * b[i];

}

#pragma ACCEL parallel factor=16
for (int i = 0; i < N; ++i) {
c[i] += a[i] * b[i];

}

OpenMP for multi-core CPUs Merlin for FPGAs

Automated code transformation and transformation
o On-chip memory banking/partitioning/delinearization

o External memory bursting/streaming/coalescing

o Host interface and host code generation (In OpenCL)

Advanced options for parallel: reduction and stencil variables

• Adopting the Merlin Compiler, developed by Falcon Computing (acquired by Xilinx in 2020 and
open-sourced in 2021)

Explorer

Bottleneck
Optimization Algorithm

Cache Hit
Checking

Merlin
Compiler

Bottleneck
Analysis

Result
Committing

Evaluator

C Kernel
Design Space
Generator +
Partitioner

Result Database

C Kernel w.
Optimized

Design Config.

Execution Flow Result Query

AutoDSE: Bottleneck-based Optimizer [TODAES’22]

10/5/22 33

void kernel_mvt(double x1[120], double x2[120],
double y_1[120], double y_2[120],
double A[120][120]) {

for (int i = 0; i < 120; i++) {
for (int j = 0; j < 120; j++) {

x1[i] += A[i][j] * y_1[j];
}

}
for (int i = 0; i < 120; i++) {

for (int j = 0; j < 120; j++) {
x2[i] += A[j][i] * y_2[j];

}
}

}

void kernel_mvt(double x1[120], double x2[120],
double y_1[120], double y_2[120],
double A[120][120]) {

#pragma ACCEL PIPELINE flatten
for (int i = 0; i < 120; i++) {

for (int j = 0; j < 120; j++) {
x1[i] += A[i][j] * y_1[j];

}
}

#pragma ACCEL PARALLEL FACTOR=15
for (int i = 0; i < 120; i++) {

#pragma ACCEL PARALLEL reduction = x2 FACTOR=12
for (int j = 0; j < 120; j++) {

x2[i] += A[j][i] * y_2[j];
}

}

}

Evaluation on Xilinx Vitis Library

• Tested on 33 kernels, each has 13.5 HLS optimization pragmas on average,
• AutoDSE achieves roughly the same performance (1.04x higher)

• Eliminated all HLS or Merlin optimization pragmas

• Both Merlin and AutoDSE keep and propagate dataflow and streaming pragmas

• Will rely on dataflow composition using TAPA (later)

10/5/22 34

Current Goal: More Extensive DSE Using Deep Graph Learning

• Review of the problem
• Want to have automatic design space exploration

• Find the best location to apply a pragma along with its best option

void kernel_mvt(double x1[120], double x2[120],
double y_1[120], double y_2[120], double A[120][120]) {

#pragma ACCEL PIPELINE flatten
for (int i = 0; i < 120; i++) {
for (int j = 0; j < 120; j++) {

x1[i] += A[i][j] * y_1[j];
}

}

#pragma ACCEL PARALLEL FACTOR=15
for (int i = 0; i < 120; i++) {

#pragma ACCEL PARALLEL reduction = x2 FACTOR=12
for (int j = 0; j < 120; j++) {
x2[i] += A[j][i] * y_2[j];

}
}

}

void kernel_mvt(double x1[120], double x2[120],
double y_1[120], double y_2[120],
double A[120][120]) {

for (int i = 0; i < 120; i++) {
for (int j = 0; j < 120; j++) {
x1[i] += A[i][j] * y_1[j];

}
}

for (int i = 0; i < 120; i++) {
for (int j = 0; j < 120; j++) {

x2[i] += A[j][i] * y_2[j];
}

}

}

void kernel_mvt(double x1[120], double x2[120],
double y_1[120], double y_2[120], double A[120][120]) {

#pragma ACCEL PIPELINE auto{__PIPE__L0}
#pragma ACCEL TILE FACTOR=auto{__TILE__L0}
#pragma ACCEL PARALLEL FACTOR=auto{__PARA__L0}
for (int i = 0; i < 120; i++) {

#pragma ACCEL PIPELINE auto{__PIPE__L2}
#pragma ACCEL PARALLEL reduction = x1 FACTOR=auto{__PARA__L2}

for (int j = 0; j < 120; j++) {
x1[i] += A[i][j] * y_1[j];

} }

#pragma ACCEL PIPELINE auto{__PIPE__L1}
#pragma ACCEL TILE FACTOR=auto{__TILE__L1}
#pragma ACCEL PARALLEL FACTOR=auto{__PARA__L1}
for (int i = 0; i < 120; i++) {

#pragma ACCEL PIPELINE auto{__PIPE__L3}
#pragma ACCEL PARALLEL reduction = x2 FACTOR=auto{__PARA__L3}

for (int j = 0; j < 120; j++) {
x2[i] += A[j][i] * y_2[j];

} } }

122x speedup
Solution:

Adopt a deep graph learning model to automatically learn the program’s features

Optimized Code
Manual code
• MVT kernel from Polybench

• Two matrix-vetor multiplications
Solution space
• > 3M design choices

Step 1: Create a Database for Training the Model

• Database generation:
• Adapting our previous work

• AutoDSE [TODAES’22]

10/5/22 36
Application N

(C/C++)
Explorer

Training
Database

Application 1
(C/C++)

Explorer

Merlin
Compiler HLS Tool

Local Search

Random Search

Bottleneck
Analyzer

Result
Commiting

Next Candidate

Next Candidate

Next Candidate

bottleneck
…

Report

Step 2: Represent the Program as a Graph

• Build the graph using the LLVM IR to capture lower-level instructions, i.e. closer to hardware

• Need to include both the program semantic and pragma flow in the graph
• Program semantic: control, data, and call flow

• Adapting the latest representation proposed for including these information (ProGraML [ICML’21])

• The graph is generated once per kernel and filled with different pragma values later on

void foo(int input[N]) {

#pragma ACCEL PIPELINE auto{__PIPE__L1}
#pragma ACCEL PARALLEL FACTOR=auto{__PARA__L1}

for (int i = 0; i < N; i++) {
input[i] += 1;

}
}

. . .

for.cond:
%0 = load i32, i32* %i, align 4
%cmp = icmp slt i32 %0, 10
br i1 %cmp, label %for.body, label %for.end

for.body: %
1 = load i32, i32* %i, align 4

%idxprom = sext i32 %1 to i64
%arrayidx = getelementptr inbounds [10 x i32],

[10 x i32]* %a, i64 0, i64 %idxprom
%2 = load i32, i32* %arrayidx, align 4
%inc = add nsw i32 %2, 1
store i32 %inc, i32* %arrayidx, align 4
br label %for.inc

. . .

LLVM IR With pragma
placeholder

Graph generator

Step 3: Build a Predictive Model

• GNN-based model:
• A single model across all applications

10/5/22 38

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒!

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒"

En
co

de
r

trainable part

MLP Prediction LayersGraph Neural Network Encoder
to extract graph embedding Graph Embedding

Function of neighboring nodes
and their edge embeddings α!#

α!$
α!%

1 3

2

4

5

6

Aggregation Feature
Transformation

• The trained model is replaced with the HLS tool for evaluating the design points

• The top M design points are evaluated with the HLS tool and added to the training
database for subsequent trainings

Design Space Exploration in GNN-DSE

Training
Database

C/C++
Code

Design Space
Generator

Graph
Generator

GNN-DSE’s
Predictive

Model

Design
Config

objectives

Design Space Exploration

objectives

Top M
Designs objectives

Evaluator
(HLS tool)

Pragma
Fill

Design Space
Explorer

10/5/22 39

Experimental Results

• Model’s performance
• Regression loss is in RMSE

• Classification: learns whether a pragma configuration is valid or not

• Keep augmenting database until design space exploration (DSE) matches the best designs
• Initial database:

• 4428 total configs / 1036 valid configs

• Final database:
• 4752 total configs / 1278 valid configs

• More training examples lead to better accuracy

10/5/22 40

Model Method Speedup DSP LUT FF BRAM All Accuracy F1-score

M1 MLP-pragma (based on Kown, et al. MLCAD’20) 3.28 0.59 0.31 0.25 0.34 4.76 0.52 0.42

M2 M1 + program context 2.94 0.47 0.24 0.13 0.16 3.94 0.78 0.40

M3 GNN-DSE 0.56 0.13 0.08 0.06 0.05 0.85 0.93 0.87

Experimental Results on Unseen Kernels
• DSE results on new kernels which were not in the database

• All new kernels dealing with matrix vector operations

• But with different coding styles, input sizes, and loop trip counts from our database

• Baseline: AutoDSE after 21 h

• GNN-DSE could achieve about the same performance
• From −2% and +5% difference with a mean of +1%

• With a maximum DSE time of 1 hour

• Adapting to domain shift in “Improving GNN-Based Accelerator Design Automation with Meta Learning [DAC’22]”

Kernel # pragma # Design
configs

DSE + HLS
Runtime (mins)

Explored Runtime
Speedup

bicg 5 3,536 18 3,536 69x
doitgen 6 179 16 179 11x

gesummv 4 1,581 16 1,581 79x
2mm 14 492,787,501 74 78,676 17x10/5/22 41

Current Limitation of GNN-DSE – Domain Shift

• Experimental evidence
• Trained on a suite of 9 kernels
• Tested on 5 different kernels with only 20 labeled designs for each of the 5 new kernel
• Root mean square error (RMSE) on the hold-out test set of each new kernel

• DSE speedup with respect to AutoDSE after 20 hours

• Accuracy drops when the testing kernels differ a lot from the training ones (domain shift), causing unsatisfactory DSE results.
Meanwhile, our goal is to design a method that works well on any real-world kernel.

jacobi-1d fdtd-2d gemm 3mm gemver
GNN-DSE 0.44x 0.06x 0.87x 0.30x 0.20x

jacobi-1d fdtd-2d gemm 3mm gemver
GNN-DSE 4.2496 6.7047 7.5337 9.1584 4.4717

10/5/22 42

via MAML

Model-Agnostic Meta-Learning (MAML) -- Finn et al. 2017.
10/5/22 43

Proposal: Use Transfer Learning (GNN-DSE-MAML)

GNN-DSE (top) vs GNN-DSE-MAML (bottom)

10/5/22 44

via MAML

Inspiration: K-shot Image Classification Using Meta-Learning

• Meta-learning:
• Compute a model that

can eventually
generalize across many
tasks

• with good data and
computation efficiency:

• Example:
• 𝐾-shot image

classification task:
• learn a classification

model that can quickly
adapt to a new class
with only 𝐾 images from
that class

45

mvt

2mm
…

stencil

A batch of kernels10/5/22 46

MAML for Training

3mm
Only 𝐾 labeled designs

10/5/22 47

MAML for Adaptation

Experimental Results – Offline Testing

• K=20 for adaption

• Adaptation is necessary for the unadapted model to obtain lower error

• FineTune: Naïve adaptation using the regular objective function

• Under 4 out of 5 kernels, MAML leads to a more accurate adapted model.

10/5/22 48

Experimental Results – DSE

• MAML-based adaptation achieves great performance for 3 new kernels
• 3mm: >17 trillion design candidates that AutoDSE got to explore only 149 of them after

20 hours since it relies on the HLS tool for evaluating each candidate
• GNN-DSE-MAML yields a significant speedup for 3mm compared to AutoDSE

10/5/22 49

Experimental Results – DSE

• For ftdt-2d and gemver, the MAML results lead to Timed Out
• The MAML-based model uses high degree of parallelization for each section of the loop

nests, overwhelming the HLS tool.

• Such cases were not covered in the K sampled samples for adapting the model.

10/5/22 50

AutoDSE and GNN-DSE are Open-source

• https://github.com/UCLA-VAST/GNN-DSE

Scan me!

• https://github.com/UCLA-VAST/AutoDSE

Scan me!

10/5/22 51

https://github.com/UCLA-VAST/GNN-DSE
https://github.com/UCLA-VAST/AutoDSE

How to Integrate Different Approaches?

10/5/22 52

HeteroCL [FPGA’19] / MLIR [https://mlir.llvm.org/]

Frontend
Compiler

Frontend
Compiler

Microarchitecture
Optimization

FPGA Accelerator

Intermediate
Representation

Caffe/

Tensorflow
Spark Halide others

Frontend
Compiler

Frontend
Compiler

Support domain specific languages
● Spark [DAC ‘18]
● Caffe [DAC ‘17]
● Halide [FPGA’20]

1. Architecture Guided Optimization: Based on common computation patterns

Composable, Parallel and Pipeline (CPP)
[DAC ‘18]

Variable loop bounds [ICCAD ‘18]

Stencil
[ICCAD ‘18]

2. Apply ML or other optimization techniques for general applications (GNN-DSE) [DAC’22]

3. Compose the entire design using latency-insensitive dataflow task [FCCM’21 & FPGA’21 & 21]

Matched
Patterns

Others
Patterns Systolic Array

[DAC ‘17, ICCAD ‘18]

HeteroCL Programming Infrastructure [FPGA’19]

• Inspired by Halide: Separate program specification and optimization (scheduling)
• Flexible: Mixed declarative & imperative programming
• Portable: Clean decoupling of algorithm & hardware customizations

• Efficient: Mapping to high-performance spatial architecture templates

10/5/22 53

Algorithm Spec.
(declarative + imperative)

HeteroCL

Compute Customization
Data Type Customization
Memory Customization FPGAs GPUs

Processors

CPU + Custom Accelerators

…

High-level
DSLs

…

Open-source: https://github.com/cornell-zhang/heterocl

HeteroCL in a Nutshell

10/5/22 54

for (int y = 0; y < N; y++)
for (int x = 0; x < N; x++)
for (int r = 0; r < 3; r++)
for (int c = 0; c < 3; c++)
out[x, y] += image[x+r, y+c] * kernel[r, c]

r = hcl.reduce_axis(0, 3)
c = hcl.reduce_axis(0, 3)
out = hcl.compute(N, N),

lambda y, x:
hcl.sum(image[x+r, y+c]*kernel[r, c],

axis=[r, c]))

HeteroCL code

Declarative code
(based on TVM)

Corresponding C code

Unroll
inner loops

Algorithm

s = hcl.create_schedule()
s[out].unroll([r,c])

Custom
Compute

for i in range(2, 8):
s.quantize([out], Fixed(i, i-2))

Custom
Data Type

linebuf = s[image].reuse_at(out, out.y)
winbuf = s[linebuf].reuse_at(out, out.x)

Custom
Memory

Y.-H. Lai, et al., HeteroCL: A Multi-Paradigm Programming Infrastructure
for Software-Defined Reconfigurable Computing, FPGA’2019 Best Paper Award

HeteroCL: Mapping to Spatial Architecture Templates

10/5/22 55

• Systolic Array

• Stencil Architecture

matrix multiply kernel
out = hcl.compute(N, N),

lambda y, x: sum(A[x, k] * B[k, y]), axis=k)

jacobi kernel
out = hcl.compute(N, N),

lambda y, x:
(in[y,x-1]+ in[y-1,x] + in[y,x] + in[y,x+1] + in[y+1,x])/5))

s[out].systolic()

s[out].stencil()

10/5/22 56

One More Question:

Now I am good at using (enhanced) HLS, how to deal with (low) clock
frequency and (long) compilation time from downstream physical synthesis ?

Modern FPGAs are Large and Complex

• FPGAs are increasingly large

• Multiple dies integrated together

• High delay penalty for die-crossing

• Large IPs with pre-determined location

57

Xilinx Alveo
U250

Xilinx Alveo
U280

Modern FPGAs are Large and Complex

• FPGAs are increasingly large

• Multiple dies integrated together

• High delay penalty for die-crossing

• Large IPs with pre-determined location

58

Die boundaries

Xilinx Alveo
U250

Xilinx Alveo
U280

Modern FPGAs are Large and Complex

• FPGAs are increasingly large

• Multiple dies integrated together

• High delay penalty for die-crossing

• Large IPs with pre-determined location

59

DDR controllers

Xilinx Alveo
U250

Xilinx Alveo
U280

Die boundaries

Peripheral IPs (e.g.,
PCIe)

Modern FPGAs are Large and Complex

• FPGAs are increasingly large

• Multiple dies integrated together

• High delay penalty for die-crossing

• Large IPs with pre-determined location

60

HBM Controller

Xilinx Alveo
U250

Xilinx Alveo
U280

Die boundaries

Peripheral IPs (e.g.,
PCIe)

DDR controllers

Modern FPGAs are Large and Complex

• FPGAs are increasingly large

• Multiple dies integrated together

• High delay penalty for die-crossing

• Large IPs with pre-determined location

• HLS has limited consideration of those
physical barriers

61

HBM Controller

Xilinx Alveo
U250

Xilinx Alveo
U280

Die boundaries

Peripheral IPs (e.g.,
PCIe)

DDR controllers

AutoBridge [FPGA’21 Best Paper Award]

• Add extra pipeline stages to long interconnects
• Couples floorplanning with HLS pipelining
• Global optimization to assure correctness
• Automate latency-insensitive design at the HLS level
• Improve average frequency from 150 MHz to

297 MHz over 43 test cases.

The initial cell
representing

the FPGA device

The initial cell
is divided into
two child cells.

Eventually form a
2x4 grid of cells

Each cell is divided;
r0 divided into r00 ,
r01; r1 into r10 , r11

Initial State Iteration 1 Iteration 2 Iteration 3
r0

r1

r00

r01

r10

r11

row

col0 1

0

1

2

3

HLS Coarse-grain
Floorplanning Detail Placement

Conventional Placement

Floorplan-Guided HLS

Original
Approach

Proposed
Approach

Successful Applications:
• [FPGA’21] AutoSA: A polyhedral compiler for high-performance

systolic arrays on fpga
• [FPGA’22] Accelerating SSSP for Power-Law Graphs
• [FPGA’22] Sextans: A Streaming Accelerator for General-Purpose

Sparse-Matrix Dense-Matrix Multiplication
• [DAC’22] Serpens: A High Bandwidth Memory Based Accelerator

for General-Purpose Sparse Matrix-Vector Multiplication
• ……

AutoBridge

Insert pipeline registers
after floorplanning to fix
critical paths

Case Study

• Gaussian Elimination, 8 configurations

63

DDR-0

DDR-1

DDR-2

● Difference in Resource Utilization
○ LUT: -0.14%
○ FF: -0.04%
○ BRAM: -0.03%
○ DSP: +0.00%

Comparison of the 24x24 Design on U250

AutoBridgeDefault

Default: avg. 245 MHz Default: avg. 223 MHz

Opt: avg. 334 MHz (1.4X) Opt: avg. 335 MHz (1.5X)

Latency-Insensitive Designs Helped Compile Time as Well!

64

Input dataflow design
in C/C++

All islands stitched together
& Inter-island routing

Phase 1:
Partitioning

(Fully automated)

Clock Source

PE

PE

PE

PE

PE PE

PE PE

Phase 2:
Parallel Compilation
(without an Overlay)

Phase 3:
Stitching

PE PE

PE PE

PE

PE PE

PE

PE

Partition the design into islands
Insert anchor registers

anchor registers

Islands and anchors
placed & routed in parallel

RapidStream [FPGA ‘22 Best Paper Award]

Experimental Result

• Tested on 6 large scale dataflow designs targeting Xilinx U250 FPGA with 4 SLRs
(dies)

• Distribute to 4 Xeon servers, each with 56 cores
• Divide the FPGA into 32 islands (8 rows, 4 columns)
• 5-7X speedup (from C++ to fully routed checkpoint)
• Up to 1.3X frequency improvement

65

0

50

100

150

200

250

300

350

400

450

CNN LU MTTKRP MM 3D Stencil 2D Stencil CNN LU MTTKRP MM 3D Stencil 2D Stencil

Frequency (MHz) Runtime (hour)

0

4

8

12

16

20

Use Overlay for Even Faster Compilation: OverGen [MICRO’22]

10/5/22

Re
c B

us

Memory Ctrl.

＋＋

＋

b[0:n

c[0:n]

a[0:n]

＋

RISCV
CPU

4-Core FPGA Overlay@
92.7MHzFPGA

RISCV
CPU

RISCV
CPU

Acce. Acce.

Network-on-Chip
LLC

DRAM Peripherals
SoC Integration by

Physical Design

10,000x faster
in re-compile

100,000x faster
in reconf.

Composing Large Dataflow Designs Using TAPA

• TAPA programs explicitly decouple communication and computation

• Computation => compiled by Vitis HLS / AutoSA / AutoDSE / …
• Communication => generated by TAPA

T1

T2

T4

T3

T1

Stream

Task

Task
Extraction

T1

T2

T3

T4

HLS

HLS

HLS

HLS

AutoBridge
Floorplanning

Pipelining Integration

Compute Logic Generation
(with 3rd Party HLS tool)

Communication Logic Generation
(by TAPA)

Synth/Place/Route

Parallel Implementation

Synth/Place/Route

Synth/Place/Route

Synth/Place/Route

Example: FlexCNN Using TAPA

• FlexCNN: an end-to-end automated DNN synthesis framework

• From ONNX to bitsream on FPGAs

10/5/22 68

FlexCNN without TAPA FlexCNN with TAPA

Fails Placement & Route Achieves up to 266 MHz

Large dataflow design composed using TAPA

Module Lines of
Code

Code
Generation

Reader 1 1,046 Template-based

Reader 2 446 Template-based

Systolic Array 4,801 Automatic

Pool 254 Template-based

Upsample 221 Template-based

Concat 350 Template-based

Add 314 Template-based

Act & BN 320 Template-based

Writer 824 Template-based

Top 6,292 Automatic

Total 14,868

Concluding Remark 1

• I am encouraged by the progress/results on democratizing accelerator
designs and customized computing

• It takes a community-wide effort

• All our tools are open-sourced, and FPGA vendors are more open as well
• One-API from Intel
• Merlin from AMD/Xilinx (after acquisition of Falcon Computing)

• Increasingly interested in using MLIR as an integration point

10/5/22 69

Concluding Remark 2

• Important for the architecture community to have a rapid prototyping flow
• From Idea to Silicon in days, not months/years

• Concerned with some accelerator evaluation methodology
• "We evaluate XXX using a C++-based cycle-level simulator.”

• Does it consider
• reduced memory bandwidth due to short burst length?
• interconnect network size and latency from HBM ports to logic elements?

• interconnect delays …?

• Has it been validated against any real silicon (FPGA or ASIC)?

10/5/22 70

Concluding Remark 3

• I had the pleasure working with many collaborators in other application domains.

10/5/22 71

• It’s time to enable domain experts to design their own accelerators!
• The deep learning community has done a much better job – ”every” domain expert can train

complex DL models
• Can we catch up? Think about broader impact!

Prof. Yizhou Sun
(UCLA)

Alex Bui and William Hsu
Low-dose CT reconstruction

Tad Blair
Real-time neural signal processing

Yizhou Sun
Graph similarity computation

Final Remark

• No doubt we are in an exciting era for
computer architecture

• We want to every (serious) software
programmer to participate
• Not just architects

• Build his/her own customized accelerators
on field-programmable fabrics
• On premise or in the cloud

• I hope that many of you can join this effort

10/5/22 72

2018 Turing Award Lecture

A Story …

10/5/22 73

• Q: Does everyone here do
High-Level Synthesis?

• A: What do you mean? We are
all from Harvard Law School.

Acknowledgements:
NSF, JUMP/CRISP, and CDSC Industrial Partners

• Multi-year efforts by many students, postdocs, and collaborators

Hao Yu
(UCLA/Falcon)Jie Wang

(UCLA)

Yuze Chi (UCLA)

Peng Wei
(UCLA)

Prof. Zhiru Zhang
(Cornell Univ.)

Prof. Vivek Sarkar
(Georgia Tech)

Yuan Zhou (Cornell)Yi-Hsiang Lai (Cornell) Weikang Qiao (UCLA)

Atefeh Sohrabizadeh
(UCLA)

Prof. Miryung Kim
(UCLA)

Yunsheng Bai
(UCLA)

Prof. Yizhou Sun
(UCLA)

Zhe Chen
(UCLA)

Sihao Liu
(UCLA)

Prof. Tony Nowatzki
(UCLA)

Jason Lau
(UCLA)

Suhail Basalama
(UCLA)

Licheng Guo
(UCLA)

Jian Weng
(UCLA)

Zhengrong Wang
(UCLA)

Prof. Peipei Zhou
(Univ. of Pittsburgh)

10/5/22 75

Thank You!

