
Scaling and Characterizing Database Workloads:
Bridging the Gap between Research and Practice

Richard Hankins°*, Trung Diep°, Murali Annavaram°, Brian Hirano¹, Harald Eri¹,
Hubert Nueckel², and John P. Shen°

°Microprocessor Research Labs (MRL)
²Software Solutions Group
Intel Corporation

¹Server Technologies
Oracle Corporation

Abstract

On-Line Transaction Processing (OLTP) workloads are
crucial benchmarks for the design and analysis of server
processors. Typical cached configurations used by
researchers to simulate OLTP workloads are orders of
magnitude smaller than the fully scaled configurations
used by OEM vendors to achieve world-record transaction
processing throughput. The objective of this study is to
discover the underlying relationships that characterize
OLTP performance over a wide range of configurations.
To this end, we have derived the “iron law” of database
performance. Using our iron law, we show that both the
average instructions executed per transaction (IPX) and
the average cycles per instruction (CPI) are critical to the
transaction-throughput performance. We use an extensive,
empirical examination of an Oracle based commercial
OLTP workload on an Intel Xeon multiprocessor
system to characterize the scaling behavior of both the
IPX and the CPI. We demonstrate that across a wide
range of configurations the IPX and CPI behavior follows
predictable trends, which can be accurately characterized
by simple linear or piece-wise linear approximations.
Based on our data, we propose a method for selecting a
minimal, representative workload configuration from
which behaviors of much larger OLTP configurations can
be accurately extrapolated.

1. Introduction

On-Line Transaction Processing (OLTP) is a
lucrative market for shared-memory multiprocessors
(SMPs) and naturally, OLTP workloads are crucial
benchmarks for the design and performance analysis of
server processors used in SMPs. Unlike other standard
benchmark suites, such as SPEC [20], OLTP workloads
are difficult to configure for a number of reasons. First,
setting up a physical OLTP system requires the fine-tuning
of a myriad of configuration parameters. The setup
complexity is further compounded by the inaccessibility of

∗ Richard Hankins is a Ph.D. student at the University of
Michigan; this research was performed while he was an
intern in Intel-MRL.

proprietary database source code. Finally, scaled OLTP
setups are prohibitively expensive for most researchers;
hence, the typical OLTP setups used by researchers in
simulations and those used in production can differ by up
to three orders of magnitude.

Researchers, using full-system simulators and binary
instrumentation tools, can only simulate small-scale OLTP
setups, known as cached setups. Cached setups
significantly scale down the database size so that the
working set fits within system memory, resulting in
negligible disk I/O. Cached setups, while still difficult to
configure, are relatively inexpensive to set up as they use
small amount of system memory and only a few disks.
These setups allow researchers to focus on the interactions
between CPU and the memory subsystem, without
worrying about the I/O interactions.

On the other hand, production environments have
much larger OLTP setups, known as scaled setups. OEM
system vendors configure scaled setups to showcase
world-record transaction processing throughputs. These
setups use a large number of disks, are dominated by disk
I/O, and their working sets far exceed the memory
capacity. These setups are tuned carefully for optimal
performance using each processor’s own performance-
monitoring counters. These setups are infeasible to
simulate; therefore, using these setups to explore new
microarchitecture ideas is impractical.

Despite the importance of the OLTP workloads in
server processor design, we are not aware of any definitive
published study that characterized the workload behavior
ranging from cached to scaled setups. Such a
characterization is essential to understanding how
simulation based design decisions perform in real-world
production environments. Therefore, the primary objective
of this study is to understand the differences in system
behavior between cached and scaled setups, and to
discover the underlying relationships that characterize
OLTP performance over a wide range of configurations.

Based on one of the most comprehensive
experimental analysis of a commercial OLTP workload on
a physical IA-32 multiprocessor system, this paper makes
several contributions. First, it proposes a simple extension
to the well known iron law of processor performance to
characterize OLTP performance. Using the new iron law

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

of database performance we show that transaction
processing throughput is primarily determined by both the
instructions executed per transaction (IPX) and cycles per
instruction (CPI). Second, using detailed performance
measurements from performance counters, we show that
the contribution of the branch and compute instructions to
the overall CPI is nearly unchanged across a wide range of
OLTP configurations. Expectedly, L3 cache misses are the
single largest bottleneck and contribute nearly 60% to the
overall CPI. Unexpectedly, coherence traffic in our small-
scale multiprocessor system has minimal impact on
performance, indicating that OLTP workloads would scale
well on future CMP designs. Third, we demonstrate that
across a wide range of configurations the IPX and CPI
behavior follows predictable trends, which can be
accurately characterized by linear approximation models.
We propose a method for selecting a minimal,
representative workload configuration from which
behaviors of much larger OLTP configurations can be
accurately extrapolated.

The rest of this paper is organized as follows. Section
2 briefly describes relevant prior work on OLTP workload
analysis. Section 3 describes our OLTP workload, the
Oracle Database Benchmark (ODB), and the experimental
methodology used in this study. Section 4 presents an
analysis of the system-level behavior of ODB across a
wide range of configurations. Section 5 relates the system-
level behavior to the processor-level behavior. Section 6
characterizes the scaling behavior of ODB using linear
approximation models. We conclude in Section 7.

2. Previous OLTP Workload Analysis

Most of the recent microarchitecture research on
OLTP workload was based on simulations using cached
setups [2][3][5][7][9][18][19]. These studies focused on
analyzing the performance impact of architectural features
on database workloads. Most of these studies show that
database applications have large instruction and data
memory footprints, suffer from frequent context switches,
and have significant cache miss rates.

Several previous studies [1][8][10][12][21] analyzed
the behavior of OLTP workloads by monitoring physical
system behavior using embedded performance counters.
These studies primarily focused on the characterization of
the memory and disk I/O subsystems. Although these
studies were based on data measurements from a physical
system using a scaled setup, they are limited to one OLTP
configuration. In particular, they did not focus on how the
behavior varies with changing OLTP configuration. The
emphasis of this study is to examine the workload
behavior ranging from cached to scaled setups and to
establish fundamental workload characteristics that span
the entire range.

In [21], they used a scaled OLTP workload and
studied the workload behavior by varying the amount of
memory and the number of warehouses. Using examples,

they demonstrated that the configuration of the OLTP
system could impact several key architectural and
operating system characteristics, such as the breakdown of
user and kernel time, the disk I/O rates, and the cycles per
instruction (CPI) of the processors. They concluded that
departures from a well-balanced scaled system can
adversely affect the workload behavior and can mislead
designers down the wrong path. However, their study did
not focus on the reasons for the observed changes in
system behavior. Our paper differs from their study in that
while we also observe changes in the system behavior, our
in-depth study shows that the situation is not dire, as the
behavior across a wide range of OLTP configurations can
be accurately characterized.

3. Experimental Methods

For this research, we use an OLTP workload that
uses Oracle as the underlying database server. We run
this workload on a small-scale multiprocessor system
consisting of four Intel Xeon processors [15]. The
performance counters [14] in the Xeon processors are used
to collect our experimental data.

3.1 Oracle Database Benchmark (ODB)

In this study, we use the Oracle Database Benchmark
(ODB)1, which is an OLTP workload derived from the
Oracle 9i Release 2 RDBMS, as the underlying database
server. ODB simulates an order-entry business where
clients execute transactions against a database. ODB
database comprises of a collection of warehouses, each
warehouse supplies data to ten sales districts, and each
sales district serves three thousand customers. Typical
transactions include entering and delivering customer
orders, recording payments received from customers,
checking the status of a previously placed order, and
checking inventory levels at a warehouse.

Figure 1 presents a graphical overview of the ODB
workload and shows the interactions between various
ODB processes. When ODB starts execution, the
underlying Oracle database spawns two types of
processes: user processes and Oracle processes. A user
process executes a database client’s application code. An
Oracle process can be either a server process that performs
the actual database queries on behalf of the user or a
background process that performs maintenance tasks. Two
background processes of note are the database writer and
the log writer. The database writer searches the pool of
database blocks that are cached in the main memory and
writes modified blocks back to disk. The log writer
process records to disk all changes made to the database.

1
ODB is not a compliant TPC-C Benchmark , even though there may
be similarities in the database schema and the transactions in the
workload. Any results presented here should not be interpreted as or
compared to any published TPC-C Benchmark results. TPC-C
Benchmark is a trademark of Transaction Processing Performance
Council (TPC).

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

All Oracle processes share a large, shared-memory
segment called the System Global Area (SGA). SGA is a
region of shared memory that is allocated when an Oracle
database is started. SGA is shared by the server processes
as well as the background processes. The largest area in
SGA is devoted to the database buffer cache, which tracks
the usage of the database blocks to keep the most recently
and frequently used blocks in memory.

User
Process

User
Process

User
Process

Recovery
Process

Lock
Process

Process
Monitor

System
Monitor

Dedicated
Server
Process

SGA
Database
Buffer
Cache

Redo Log
Buffer

DMA
via OS

Redo
Log
Files

Control
Files

Data
Files

Log
WriterDatabase

Writer

Check
Point

Figure 1: Overview of the ODB workload

The server processes operate by accessing control
data blocks and database buffers held in the SGA. If a
server process tries to access a database block not in SGA,
the process initiates a DMA transfer to bring the block
from disk to SGA and then relinquishes control of the
CPU so that another server process can execute. When the
disk transfer has completed, the operating system awakens
the initiating server process at the next scheduled
opportunity. This concurrent transaction execution allows
the server process’s idle time to be masked with useful
work.

In our setup, the size of an ODB warehouse is about
100 MB, which includes the database tables and the
indices. There are two log files each 25 GB that are shared
by all warehouses.

3.2 OLTP Configuration Space

ODB has numerous configuration parameters that
can influence ODB execution behavior. One important
parameter is the SGA size. SGA is intended to hold as
much of the database working set as possible in memory.
In this study, we do not use the Intel physical addressing
extensions [14] to go beyond 4 GB of virtual memory
space. In the 4 GB physical system used in this study we
allocate the minimum 1 GB required for the Linux OS and
use the remaining memory for the SGA.

To reduce the configuration complexity to a
manageable level, we focus on the following parameters to

represent an OLTP configuration: number of warehouses
(W), number of concurrent clients (C), number of
processors (P), and number of disks (D). The first two
parameters describe the workload configuration, while the
latter two describe the system configuration.

3.2.1 Workload Scaling

Scaling the workload involves spanning the spectrum
from a cached setup to a scaled setup. The parameter that
dictates whether a setup is cached or scaled is the number
of warehouses. The number of warehouses can span from
tens of warehouses for a cached setup to thousands of
warehouses for a scaled setup. Our goal is to formulate
empirical relationships between a cached setup and a
scaled setup.

In order to perform a valid performance comparison
between two different ODB configurations, we try to
maintain a consistent CPU utilization for all
configurations. In this study we strive to keep CPU
utilization above 90% across all configurations. To
achieve such high CPU utilization, the number of clients
needs to be increased as we scale the number of
warehouses. This relationship exists because an increase in
the number of warehouses results in an increase in the disk
I/O rate. To mask the increasing disk I/O latency, the
number of concurrent clients needs to be increased. In our
experimental evaluation, we achieve our goal of 90+%
CPU utilization at each configuration by adjusting the
number of clients as appropriate in a range from 8 to 64.
Consequently, the number of warehouses and the number
of clients are not necessarily independent parameters.
Table 1 shows the number of clients used for the wide
range of OLTP configurations. As expected, the number of
clients required to saturate the CPU grows relatively
slowly for small number of warehouses and also for fewer
processors. As we increase the number of warehouses far
beyond the size of the SGA the disk I/O rate increases
disproportionately requiring us to use more clients to hide
the disk latency.

Clients
Warehouses 1P 2P 4P

10 8 10 10
50 8 16 32
100 6 16 48
500 12 25 56
800 13 36 64

Table 1: Number of Clients at 90% CPU Utilization

3.2.2 System Scaling

The two system parameters for an OLTP
configuration are processors and disks. One objective of
this study is to look at the design of chip multiprocessors
(CMP) for OLTP workloads. Typical CMP designs
[6][11][17] allow a modest number of processors (2 to 8

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

cores) to be integrated on a single silicon die. Our interest
in CMP designs, coupled with the constraint of our Quad
SMP system, limits the scaling of P to four processors.
Furthermore, for this study, we did not scale D; instead,
we limited the number of warehouses to 1200 to fit within
the 26 disks in our experimental system.

3.3 IA-32 Multiprocessor System

At the beginning of this study we chose the best
performing Intel Xeon 4-way SMP server at that time as
our experimental machine, with Red Hat Linux
Advanced Server 2.1 OS and 2.4.9-e.10smp kernel. The
Intel Xeon processors in our system operate at 1.6 GHz
and have three levels of caches. The first level has an
execution trace cache, while the second and third levels
have unified instruction and data caches of 256 KB and 1
MB, respectively. The Xeon MP processors are based on
the NetBurst microarchitecture and are capable of
running with Hyper-Threading technology [15]. For the
purpose of this study, we do not enable the Hyper-
Threading technology. Our system is populated with 4 GB
of PC200 DDR memory using the ServerWorks Grand
Champion HE chipset and has 26 Ultra320 SCSI drives,
each with 73 GB of capacity.

The Xeon MP processor provides a comprehensive
set of embedded counters for performance-monitoring
events [14]. There are 18 performance counters grouped
into 9 pairs, with each pair associated to a particular subset
of events. The particular counters can be selected by
setting the counter configuration control registers.
Performance monitoring on Intel processors is completely
noninvasive and does not affect the execution of the
Oracle software. To sample the performance-monitoring
counters, we use the EMON program and the
corresponding kernel-level driver. EMON is a software
tool used internally at Intel that is able to sample the
processor’s performance-monitoring counters at a user-
determined frequency. A number of publicly available
software products provide similar access to the
performance-monitoring counters, including the Intel
VTune Performance Analyzer [15].

For all experiments, we ran ODB for twenty minutes
prior to taking measurements. This warm up period allows
the database to fill its buffer cache in SGA with data and
enter into steady-state I/O behavior. A ten minute
measurement period follows the warm up period. During
the measurement period, each event is measured for ten
seconds in a round-robin fashion. The event measurements
are repeated six times.

3.4 “Iron Law” of Database Performance

We have adapted the classic “iron law” of processor
performance [13] to provide a model for database
performance and a framework for analyzing ODB
workload behavior. The classic iron law states the

processor performance, S, as a function of three terms:

CPIPL

F
S

×
= , where F is the clock frequency, PL is the

path length of the program, and CPI is the average cycles
per instruction. Performance can be improved either by
increasing F, or by decreasing PL or CPI. Although the
three parameters can be independently improved, in
practice they are inter-dependent on each other. For
instance, increasing the frequency usually comes at the
expense of increasing the CPI.

For database workloads, performance is determined
by the transaction-processing throughput, which can be
measured in terms of number of transactions per second
(TPS). We can model the TPS of each processor in an

OLTP system as follows:
CPIPL

F
TPScpu ×

= , where the

path length, PL, is now the average number of instructions
executed per transaction (IPX) and CPI is the average
number of cycles executed per instruction.

To get the overall throughput of a multiprocessor
system, the TPS of each processor can be multiplied by the
number of processors in the system. We define a new iron
law of database performance for a multiprocessor system
as follows:

CPIIPX

FP
TPSmp ×

×= .

Database performance can be increased by increasing
F or P, or by decreasing IPX or CPI. The CPI in this
equation is the average CPI measured at each processor,
taking into account the effects of inter-processor
communication. For our study, F is fixed, and P is varied.
Our intent is to understand how IPX and CPI vary over a
wide range of processor and warehouse configurations and
the next two sections present experimental data to aid this
understanding.

4. System-level Behavior of ODB

The performance of an OLTP system is typically
measured in terms of transaction processing throughput. In
this section, we first show how TPS varies with the
number of warehouses and the number of processors. We
then examine the two primary system characteristics that
affect TPS: IPX and CPI. The CPI component is further
analyzed in Section 5.

4.1 Transaction Processing Throughput

Figure 2 shows how TPS varies as we scale the
number of warehouses from 10 to 1200, and as we scale
the number of processors from 1 to 4. The maximum TPS
is achieved at about 10W for all three processor
configurations. The TPS then decreases as the number of
warehouses is increased.

To better explain the TPS trends, we first identify
three distinct regions of ODB operation: CPU bound,

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

balanced, and I/O bound. We describe a system as being
CPU bound when the working set of ODB fits almost
entirely in main memory. As previously mentioned,
researchers typically call such a system a cached setup.
The performance of a CPU bound system is limited by the
available computing power. These systems have negligible
disk I/O; hence, there is very little need to overlap
processing and I/O. As shown in Table 1 fewer than 10
concurrent clients are needed to saturate the CPU. Based
on the disk I/O measurements, in our setup, we classified a
CPU bound system to have fewer than 50 warehouses.

0

100

200

300

400

500

600

700

0 200 400 600 800 1000 1200
Warehouses

T
P
S

1P 2P 4P

Balanced I/O Bound

CPU Bound

Figure 2: Variance of ODB TPS with P and W Scaling

The ODB working set increases almost linearly with
the number of warehouses. As the working set increases
beyond the size of the database buffer cache (2.8 GB in
our setup), fewer blocks remain cached in the database
buffer cache and, therefore, more disk I/O is required. The
database system tries to mask this increasing disk latency
with concurrent, independent threads of execution from
the different database clients. We define a balanced
system as one having sufficient compute and disk
bandwidth in which the disk read latency can be
completely overlapped by using an ample number of
independent threads of execution. We maintain the CPU
utilization of a balanced system above 90%, representing a
system that overlaps nearly all of the I/O latency.
However, to achieve such a high level of CPU utilization
these configurations need more concurrent clients as
shown in Table 1. A balanced system in out setup has
fewer than 800 warehouses.

As the number of warehouses continues to increase,
the I/O subsystem eventually reaches its maximum
throughput. We define such a system as being I/O bound.
Adding CPUs or increasing the number of database clients
cannot increase the performance of an I/O bound system.
In our setup, the 1200-warehouse setup can be categorized
as an I/O bound system since our I/O subsystem reached
its maximum throughput, and the CPU utilization would
not go higher than 63% for the 4P system.

In order to compare various ODB configurations
fairly, we chose only those configurations that could
sustain a high level of CPU utilization. For the remainder

of the paper, we only discuss our results for configurations
that range from 10 to 800 warehouses in which the CPU
utilization is consistently kept above 90%. We do not
include the 1200W setup in which the CPU utilization is
much less than 90%. Note that in Figure 2, the
demarcation of the three regions is done based on
empirical measurements on our machine and the
boundaries of these regions are dependent on the system
configuration, such as memory size, and disk bandwidth.

Figure 3 shows how the overall CPU utilization is
split between OS and user code. In ODB, most of the OS
execution overhead comes from disk I/O. Since the disk
I/O grows with the number of warehouses the OS
overhead increases from less than 10% to just above 20%
at 800 warehouses.

0%

20%

40%

60%

80%

100%

0 100 200 300 400 500 600 700 800

Warehouses

U
til
iz
at
io
n

1P-User 2P-User 4P-User

1P-OS 2P-OS 4P-OS

Figure 3: CPU Utilization Split: OS and User

4.2 Transaction Path Length

In the previous subsection, we showed how the
overall TPS performance varies with W and P. In this
section, we show how IPX contributes to this TPS trend.
As stated in Section 3.4, TPS decreases with increasing
IPX, if all other factors remain constant.

0.0

0.5

1.0

1.5

2.0

2.5

0 100 200 300 400 500 600 700 800
Warehouses

IP
X
(x
10

6
)

1P 2P 4P

Figure 4: Millions of Instructions per ODB Transaction

In Figure 4, the IPX trend (in millions of
instructions) is shown to increase roughly linearly with W.
To explain this trend, we split the IPX into two
components: user-space IPX and OS-space IPX, shown in
Figure 5 and Figure 6, respectively. The user-space IPX is

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

flat, indicating that the number of instructions executed in
the database does not vary significantly with W. However,
the OS code path is increasing with W. This trend is due to
the increasing amount of I/O that must be serviced by the
OS, along with an increasing amount of time spent in the
OS scheduler to perform context switching. This trend is
further analyzed in the next subsection.

0.0

0.5

1.0

1.5

2.0

0 100 200 300 400 500 600 700 800
Warehouses

IP
X
-
U
se
r
(x
10

6
)

1P 2P 4P

Figure 5: User-Space IPX

0.0

0.5

1.0

1.5

2.0

0 100 200 300 400 500 600 700 800
Warehouses

IP
X
-
O
S
(x
10

6)

1P 2P 4P

Figure 6: OS-Space IPX

4.3 Major System Events Affecting IPX

Figure 7 shows the total number of disk I/Os (reads
and writes) per transaction, in 1K blocks. As explained in
Section 2.1, the size of the working set increases linearly
with the number of warehouses. Once the working set size
surpasses the SGA size, the disk I/O per transaction
increases with warehouses. From 10 to 25 warehouses, the
disk read traffic is very small, as all of the working set
resides in the main memory. As the number of warehouses
increases, more disk I/O occurs to read in database pages
from disk that no longer fit in the database buffer cache.

The amount of data written to disk also increases
with the number of warehouses. The write traffic can be
categorized into two types. One is the log data written to
the disk for the purpose of maintaining consistency and
durability of database updates. The amount of log data
generated depends on the transaction type and how the
database executes that transaction. In particular, it does not
depend on the number of processors or on the number of
warehouses. ODB, on average, generates 6 KB of log data

per transaction. For up to 25 warehouses, the disk write
traffic is almost entirely log traffic, as there is almost no
need to swap pages out of the database buffer cache.

The second type of disk write traffic is due to writing
back the dirty pages that are evicted from the database
buffer cache. The working set increases with the number
of warehouses, and as a result, a growing number of dirty
pages will have to be removed from the database buffer
cache and written back to disk.

0
10
20
30
40
50
60
70
80

0 100 200 300 400 500 600 700 800
Warehouses

I/O
p
er
T
ra
n
s
(1
K
B
lk
)

1P 2P 4P

Figure 7: Total disk I/Os per ODB Transaction

0

10

20

30

40

50

0 100 200 300 400 500 600 700 800
Warehouses

C
o
n
te
xt
S
w
it
ch

p
er
T
ra
n
s.

1P 2P 4P

Figure 8: Context Switches per ODB Transaction

Closely related to the amount of I/O processed by the
system is the amount of context switching that occurs per
transaction. The operating system uses context switching
to continue computation across multiple, independent
threads of execution, one or more of which may be stalled
due to disk reads or blocked on a synchronization
structure, such as a semaphore. The number of context
switches should be proportional to the disk reads, except at
the smallest warehouse configurations where data
contention is at its highest. Note that disk writes are
typically non-critical and are handled asynchronously by
the OS.

Figure 8 shows the number of context switches per
ODB transaction executed. The amount of context
switching is very high for the 10-warehouse configuration,
primarily due to database block contention that results
from multiple processes sharing a very small data set. As
the number of warehouses increases, the amount of
context switching sharply decreases as the data contention

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

is reduced. As the workload size continues to increase,
increasing disk I/O causes the context switching to
increase. Based on the trend in Figure 8, apart from the
cached configurations, all other configurations exhibit
context-switching trends that correlate well with the disk
I/O reads.

5. Processor-level Behavior of ODB

In this section, we analyze the average cycles per
instruction (CPI) as W is varied. We decompose CPI to
understand how various microarchitectural components
contribute to the overall CPI. Our results indicate that L3
cache misses are the single largest bottleneck to CPI
performance. Hence, we further analyze the number of L3
misses per instruction executed (MPI), and the impact of
bus utilization on the L3 miss penalty. As stated in
Section 3.4, TPS decreases with increasing CPI, if all
other factors remain constant.

5.1 Processor CPI Trends

Figure 9 shows the CPI trends as the number of
warehouses is increased. The overall CPI increases with
the number of warehouses and with the number of
processors. From 10 to 100 warehouses, the slopes are
steep, but as W increases beyond 100, the slopes begin to
level off, indicating small CPI increase with increasing W.
The CPI trends in Figure 9 are further separated into the
CPI for user-space instructions and the CPI for OS-space
instructions, as shown in Figure 10 and Figure 11,
respectively. The user-space CPI, shown in Figure 10,
correlates well with the overall CPI. This correlation is to
be expected as the user-space code is between 70%-80%
of all code executed.

The OS-space CPI trend, shown in Figure 11,
slightly decreases with the increase in W. The high
variance in the OS-space CPI trend for a small number of
warehouses can be attributed to the small percentage of
time that is spent in the operating system code and the
resulting sampling errors in EMON. As the amount of
time spent executing operating system code increases, the
CPI decreases due to the improved locality and due to idle
spin loops.

5.1.1 CPI Breakdown

To further understand how various microarchitectural
components of the Xeon processor contribute to the
overall CPI, we decompose the CPI into
microarchitectural events and measure these events using
the performance counters. After extensive analysis, we
found that 10 events are satisfactory to characterize the
microarchitectural behavior of our system. We list these
performance-monitoring events in Table 2, along with
aliases that we use for the remainder of this section.

0.0

2.0

4.0

6.0

8.0

10.0

0 100 200 300 400 500 600 700 800
Warehouses

C
P
I

1P 2P 4P

Figure 9: Overall CPI Trends

0.0

2.0

4.0

6.0

8.0

10.0

0 100 200 300 400 500 600 700 800
Warehouses

C
P
I-
U
se
r

1P 2P 4P

Figure 10: User Space CPI

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

0 100 200 300 400 500 600 700 800
Warehouses

C
P
I-
O
S

1P 2P 4P

Figure 11: OS-Space CPI

To attribute the microarchitectural components to the
CPI, we use the simple approach of assigning a fixed
number of CPU stall cycles to each microarchitectural
event, as shown in Table 3. The contribution of each event
to the overall CPI is then calculated by multiplying the
fixed stall cycles with the corresponding event count, as
shown in Table 4. After summing the resulting
contributions, we arrive at a computed CPI. The difference
between the measured CPI and the computed CPI is
recorded as the “Other” component.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

Event Alias EMOM Events Used Description
Instructions instr_retired The number of instructions retired
Branch
Mispredictions

mispred_branch_retired The number of mispredicted branches

TLB Miss page_walk_type The number of misses in the TLB
TC Miss BPU_fetch_request The number of misses in the Trace Cache
L2 Miss BSU_cache_reference The number of misses in the L2 cache
L3 Miss BSU_cache_reference The number of misses in the L3 cache
Clock Cycles Global_power_events The number of unhalted clock cycles
Bus Utilization FSB_data_activity The percentage of time the processor bus is

transferring data
Bus-Transaction
Time

IOQ_active_entries &
IOQ_allocation

The average amount of time to complete a bus
transactions once it enters the IOQ

Table 2: Performance-Monitoring Events Used in CPI Analysis

Event Alias Cycles per Event
Instruction 0.5
Branch Misprediction 20
TLB Miss 20
TC Miss 20
L2 Miss 16 (measured)
L3 Miss 300 (measured)
Bus-Transaction Time for 1P 102 (measured)

Table 3: Clock Cycle Cost for Each Component

CPI
Component

Contribution Formula

Inst Instructions * 0.5
Branch Branch Mispredictions * 20
TLB TLB Miss * 20
TC TC Miss * 20
L2 (L2 Miss – L3 Miss) * 16
L3 L3 Miss * (300 + Bus-Transaction

Time – Bus-Transaction Time for 1P)
Other Clock Cycles / Instructions – sum

(computed components)

Table 4: Description of CPI Component Costs

Figure 12 shows the breakdown of the CPI into its
components for increasing workload sizes. From this
breakdown, it appears that the primary contributor to CPI
is the main memory latency, labeled as “L3 Miss” in the
figure. As the figure shows, surprisingly, the compute and
branch components of the CPI vary little as the workload
scales; however, the memory component increases with
the number of warehouses and with the number of
processors. This fact motivates further examination of the
L3 cache miss behavior in the following subsection.

0
1

2
3

4

5
6

7

8

9
10

1P 2P 4P 1P 2P 4P 1P 2P 4P 1P 2P 4P

Warehouses

C
P
I

Other

L3 Miss

L2 Miss

TC

TLB

Branch

Inst

10 W 100 W 500 W 800 W

Figure 12: CPI Breakdown by Event

5.2 Memory System Contributions

In Section 5.1, we show that the L3 cache-miss
latency is the primary bottleneck to performance,
contributing nearly 60% to the CPI. We now investigate
how L3 cache behavior changes with W in order to gain
insight into how the memory-system behavior affects CPI.
The metric that we use is the average number of L3 cache
misses per instruction executed (MPI).

Figure 13 shows the L3 MPI as W is varied. Starting
with 10 warehouses, the MPI increases sharply until about
100 warehouses, as the working set exceeds L3 capacity.
At approximately 100 warehouses, the trend in MPI
becomes less steep, as the L3 miss rate reaches saturation
at 60%. As the number of warehouses continues to
increase, the L3 MPI also continues to increase due to the
increasing context switching, which results in cache
flushes.

The overall MPI increases with W but, surprisingly,
MPI does not increase with the number of processors.
These results show that cache coherence misses are not
noticeably affecting the miss rate. This observation seems
to contradict the findings in previous research [5][6][7].
We believe that the discrepancy is due to two reasons.
First, we are using Oracle9i as opposed to Oracle7i, which

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

is used in [6]. Oracle9i has better scaling performance than
Oracle7i. Second, low coherence misses may be an
indirect effect of having a relatively small (1MB) L3
cache, in which the coherence misses are overshadowed
by the magnitude of capacity misses.

0.000

0.005

0.010

0.015

0.020

0.025

0 100 200 300 400 500 600 700 800
Warehouses

L3
M
P
I

1P 2P 4P

Figure 13: L3 Misses per Instruction Executed

0.000

0.005

0.010

0.015

0.020

0.025

0 100 200 300 400 500 600 700 800
Warehouses

L
3
M
P
I-
U
se
r

1P 2P 4P

Figure 14: User-Space L3 Misses per Instruction

0.000

0.005

0.010

0.015

0.020

0.025

0 100 200 300 400 500 600 700 800
Warehouses

L3
M
P
I-
O
S

1P 2P 4P

Figure 15: OS-Space L3 Misses per Instruction

The overall L3 MPI has been further split into two
components: user-space and OS-space components, as
shown in Figure 14 and Figure 15, respectively. In Figure
14, the user-space component of MPI correlates well with
the overall MPI. In Figure 15, the OS-space component of
MPI decreases with the increasing workload. This trend is
due to the increasing amount of time spent in kernel code,
which results in increased temporal locality of kernel code
and data structures.

The trend in the overall MPI (Figure 13) correlates
well with the trend in CPI (Figure 9), except that CPI
increases with the number of processors while MPI does
not. Further investigation revealed that CPI increases with
P due to growing bus-traffic overhead; as the number of
processors increases, so does the total number of
transactions on the bus. As the bus utilization increases,
the time to execute a bus transaction also increases. Figure
16 shows the average time, in CPU clocks, to execute a
bus transaction once it enters the IOQ. The IOQ latency
remains nearly constant with increasing W on 1P.
However, there is a dramatic increase in IOQ latency in 4P
due to the increased bus utilization. The bus utilization
approaches 45% for the 4P configurations but is less than
30% for the 2P configurations.

0

40

80

120

160

200

0 100 200 300 400 500 600 700 800
Warehouses

B
u
s
T
ra
n
sa
ct
io
n
T
im
e

(c
p
u
cl
o
ck
s)

1P 2P 4P

Figure 16: Bus-Transaction Time (in the IOQ)

6. Modeling Behavior

In the previous section, our results show that both the
CPI behavior and the MPI behavior follow predictable
trends across a wide range of ODB configurations. We
now show that trends in CPI and MPI can be accurately
approximated by two linear regions of behavior. We then
propose a method for selecting the minimal ODB
configuration that can be used as a basis for analyzing
large-scale ODB configurations.

6.1 CPI and MPI Trending

In Section 5.2, we analyzed the L3 MPI trends and
concluded that the MPI trends have two regions of
behavior. In the first region, which includes configurations
up to 100 warehouses, the sharp increase in MPI is due to
L3 caching effects. We call this region the cached region.
In the second region, which includes configurations
having more than 100 warehouses, the L3 cache miss rate
reaches near saturation, and the MPI trend becomes
relatively flat. We call this region the scaled region. Our
results also show that L3 cache miss stalls are the single
largest determinant of CPI; not surprisingly, the CPI
trends also reflect the same two regions of behavior. We
propose to use simple, linear models to approximate the
two regions of behavior.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

Using the CPI trend of the 4P configuration, Figure
17 illustrates the linear approximation models for the two
behavioral regions. Using linear least-squares regression
on the CPI data, we derive the two linear equations. We
consider the intersection of the two linear equations to be
the boundary between the cached region and the scaled
region. We call the intersection of the two regions the
pivot point. The pivot point represents a transition point
where the execution behavior of the workload on a given
system changes from being a cached setup to behaving
like a scaled setup.

Similar to the CPI trend, the MPI trends can also be
separated into two regions that can be modeled by two
linear equations. Using the MPI trend for the 4P
configuration, Figure 18 shows the two linear equations
representing the cached and scaled regions for the L3 MPI.

5.0

6.0

7.0

8.0

9.0

10.0

0 100 200 300 400 500 600 700 800
Warehouses

C
P
I

4P Cached Scaled

Pivot Point: 130 Warehouses

Figure 17: Linear Model of CPI

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0 100 200 300 400 500 600 700 800

Warehouses

M
P
I

4P Cached Scaled

Pivot Point: 143 Warehouses

Figure 18: Linear Model of MPI

6.2 Pivot Point for Workload Scaling

The pivot point can be used as a lower bound to
represent an OLTP workload with sufficient execution
behavior to look like a scaled setup. In other words, for a
configuration to exhibit scaled setup behavior, its size
must be greater than the pivot point. For example, based
on Figure 17 and Figure 18, the 200W setup can be
viewed as a representative scaled setup, based on which
the behavior of even larger setups can be accurately
extrapolated using the linear approximation equation.
Hence, simulation results based on the 200W setup may be

used to accurately project the behaviors of fully scaled
setups, and there is no need to simulate larger setups.

CPI MPI
1P 119 102
2P 142 147
4P 130 144

Table 5: Number of Warehouses for Pivot Points
The numbers of warehouses for the CPI and MPI

pivot points for all three processor configurations are
shown in Table 5. All the pivot points are below 150
warehouses across all processor configurations. Except for
1P, the CPI pivot point is smaller than the MPI pivot
point. This discrepancy is due to the increased bus latency
of 2P and 4P configurations over 1P (Figure 16). The MPI
trends account only for the number of L3 misses, while the
CPI trends account for the variation in the latency of an L3
miss. The increased bus latency makes the CPI trends
steeper than the MPI trends; hence, the CPI trend reaches
the scaled region earlier than the MPI trend. Since the CPI
accounts for the latency effects more accurately than MPI,
we believe that the CPI pivot point is a more accurate
representative of the scaled region. Since the pivot points
shown in Table 5 are derived from a single machine
configuration, one natural question is how does the pivot
point change with varying system attributes?

6.3 System Effects on the Pivot Point

The slope of the cached region is determined by the
L3 cache size. We expect the slope of the CPI curve in the
cached region to decrease with increasing L3 cache size.
Hence, the pivot point will shift to the right with
increasing L3 cache size. On the other hand, the slope of
the scaled region is determined by the context switch
frequency. Context switch frequency is, in turn, dependent
on the number of concurrent clients and the I/O
bandwidth. As the I/O bandwidth increases with the
addition of disk drives, the I/O latency will decrease (until
it reaches some minimum threshold), and the number of
concurrent processes necessary to overlap I/O latency will
also decrease. As a result, the number of context switches,
and hence the OS overhead, will decrease. The pivot point
may then shift towards the left, indicating that a smaller
configuration can be used as the representative workload.
Thus, increasing the L3 cache size and disk bandwidth has
opposing effects in determining the pivot point. For
systems with larger L3 caches, more bus bandwidth, and
more disk I/O bandwidth than our system, we also expect
a smoother transition between the cached and the scaled
regions than what we observed.

In order to validate these conjectures, we recently
conducted similar scaling experiments on a Quad Itanium2
server with 16GB memory and 34 disks (8 more than what
we used in our Xeon server). The Itanium2 processor has
a 3MB L3 cache and has about 50% higher bus bandwidth.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

Due to timing and space constraints we present only the
CPI scaling data, as shown in Figure 19. More details on
our Itanium2 experiments are available in [22]. As shown
in the figure, the 3MB L3 cache in Itanium2 processor
reduces the slope of the CPI curve in the cached region.
Similarly, the increased bus and disk bandwidth causes a
more gradual increase in the CPI in the scaled region.
Hence, the resulting CPI pivot point of 118 warehouses is
close to the CPI pivot point of the Quad Xeon server.

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

0 200 400 600 800 1000 1200
Warehouses

C
P
I

4P Cached Scaled

Pivot Point: 118 Warehouses

Figure 19 CPI Scaling on an Itanium2 Quad Server

7. Conclusions

The extensive experimental study presented in this
paper has yielded a number of interesting observations,
some not surprising and others unexpected. For database
workloads running on small-scale multiprocessors, the
primary impediment to processor performance is the
penalty due to L3 cache misses. Contrary to the belief
among researchers, coherence misses from a small-scale
multiprocessor system are not a crucial bottleneck to
overall performance. Instead, having adequate bus and I/O
bandwidths along with cache capacity is essential to
achieving high transaction throughput.

Overall database performance can be modeled by an
adaptation of the classic iron law for processor
performance. Based on our new iron law of database
performance, we show that both the IPX (average
instructions per transaction) and CPI (average cycles per
instruction) are critical to performance. As the database
workload size is scaled, we see corresponding increases in
IPX and CPI. A linear increase in IPX is observed, mainly
due to the increase of I/O activities and the associated
increase in context switches. The increase in CPI can be
accurately modeled by two linear regions. In the cached
regions (small number of warehouses), the CPI increase is
quite steep, reflecting the inability of the L3 to capture the
working set. However, in the scaled region (large number
of warehouses), L3 cache misses reach near saturation,
and the CPI increase is quite gradual for increasing
workload size. To increase overall database workload
performance, the primary targets for optimization are the
reduction of IPX and CPI.

While our experimental setup is representative of a
typical database server, it has a few limitations, and the
experimental results from this study must be interpreted
with these limitations in mind. First, the 1 MB L3 cache is
not large enough for ODB; larger L3 capacity is definitely
needed for OLTP workloads. The 26 SCSI disk drives in
our experimental setup are insufficient to provide adequate
I/O bandwidth when the number of warehouses is
increased beyond 800, which in turn can increase the I/O
latency and induce additional stalled times in the CPUs
waiting for disk I/O reads. We also see the limitation of
the bus bandwidth that prevents us from scaling the
number of processors beyond 4. For the 4P system with
less than 1000 warehouses, we see the bus utilization
approaching 45%, which is quite high for a production
OLTP system. Of course, the 32-bit addressing limits our
physical memory capacity. This in turn limits the SGA
size and the critical database buffer cache size. For our
immediate follow-on work, we plan on alleviating some of
these limitations in a new set of experimental studies.

Regardless of these limitations, this study has given
us a great deal of insights into database (OLTP) workloads
and how they behave on a small-scale multiprocessor
system. One aim of this study is to demystify the database
workloads for architects who are designing the next-
generation server processors and platforms. We see that
there is no mysterious chasm between small cached setups
and large scaled setups, in which unpredictable behaviors
may emerge. While the IPX and CPI at the two extremes
are different, there are predictable trends that span from
one end to the other, at least across the two orders of
magnitude of workload sizes (10W to 1000W).

The experimental study of this paper has yielded new
“food for thought” concerning future research directions.
In terms of research methodology, in order to capture
scaled setup behavior, the database workload
configuration must be greater than the pivot point size. In
terms of novel techniques for improving database
workload performance, they must ultimately reduce either
IPX or CPI, or both. The reduction of IPX should focus on
reducing the overhead of context switches due to I/O
activities. For CPI reduction, techniques targeting
coherence misses may not yield much performance gain.
Other than increasing the capacity of L3, more efficient
use of the limited L3 capacity, through more judicious and
specialized caching schemes, should be explored. We plan
to address some of these issues in our future research.

8. Acknowledgements

We would like to thank Nhon Quach (Oracle),
Seckin Unlu (Intel) and his group, and Yong-Fong Lee
(Intel) for reviewing the paper and providing constructive
feedback. We also thank the anonymous reviewers for
their thorough and thoughtful comments and suggestions.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

9. References

[1] A. Ailamaki, D. DeWitt, M. Hill, and D. Wood.
DBMSs on a Modern Processor: Where Does Time
Go? In Proceedings of the 25th International
Conference on Very Large Data Bases, pages 266–
277, September 1999.

[2] A.R. Alameldeen and D.A. Wood. Variability in
Architectural Simulations of Multi-threaded
Workloads, In Proceedings of the 9th International
Symposium on High-Performance Computer
Architecture, pages 7-18, February 2003.

[3] M. Annavaram, T. Diep and J.P. Shen. Branch
Behavior of a Commercial OLTP Workload on Intel
IA32 Processors. In Proceedings of the International
Conference on Computer Design, pages 242-248,
January 2001.

[4] T. Diep, M. Annavaram, H. Nueckel, B. Hirano, and
J. P. Shen. Analyzing Performance Characteristics of
OLTP Cached Workloads by Linear Interpolation. In
Proceedings of the 6th Workshop on Computer
Architecture Evaluation using Commercial
Workloads, pages 51-59, February 2003.

[5] L.A. Barroso, K. Gharachorloo, and E. Bugnion.
Memory System Characterization of Commercial
Workloads. In Proceedings of the 25th International
Symposium on Computer Architecture, pages 3–14,
June 1998.

[6] L.A. Barroso, K. Gharachorloo, R. McNamara, A.
Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets, and
B. Verghese. Piranha: A Scalable Architecture Based
on Single-Chip Multiprocessing. In Proceedings of
the 27th International Symposium on Computer
Architecture, pages 282-293, June 2000.

[7] L.A. Barroso, K. Gharachorloo, A. Nowatzyk, and B.
Verghese. Impact of Chip-Level Integration on
Performance of OLTP Workloads. In Proceedings of
the 6th International Symposium on High-
Performance Computer Architecture, pages 3-14,
January 2000.

[8] Z. Cvetanovic and D. Bhandarkar. Characterization of
Alpha-Axp Performance using TP and SPEC
Workloads. In Proceedings of the 21st International
Symposium on Computer Architecture, pages 60–70,
April 1994.

[9] J. Lo, L. A. Barroso, S. Eggers, K. Gharachorloo, H.
Levy, and S. Parekh. An Analysis of Database
Workload Performance on Simultaneous
Multithreaded Processors. In Proceedings of the 25th
Annual International Symposium on Computer
Architecture, pages 39-50, June 1998.

[10]M. Franklin, W.P. Alexander, R. Jauhari, A.M.G.
Maynard, B.R. Olszewski. Commercial Workload

Performance in the IBM Power2 Risc System/6000
Processor. IBM J. of Research and Development,
38(5): 555–561, 1994.

[11] J. Kahle. Power4: A Dual-CPU Processor Chip.
Microprocessor Forum '99, October 1999.

[12]K. Keeton, D.A. Patterson, Y.Q. He, R.C. Raphael,
and W.E. Baker. Performance Characterization of a
Quad Pentium Pro SMP Using OLTP Workloads. In
Proceedings of the 25th International Symposium on
Computer Architecture, pages 15–26, June 1998.

[13] J. Shen and M. Lipasti, Modern Processor Design:
Fundamentals of Superscalar Processors, McGraw
Hill, 2002.

[14]The IA-32 Intel® Architecture Software Developer’s
Manual, Volume 3: System Programming Guide.

[15]The Intel VTune Performance Analyzer.
http://www.intel.com/software/products/vtune/.

[16]The Intel Xeon Processor MP Product Overview.
http://developer.intel.com/design/Xeon/xeonmp/prodb
ref/.

[17]K. Olukotun, B.A. Nayfeh, L. Hammond, K. Wilson
and K. Chang. The Case for a Single-Chip
Multiprocessor. In Proceedings of the 7th
International Symposium on Architectural Support for
Parallel Languages and Operating Systems, pages 2-
11, Oct 1996.

[18]P. Ranganathan and K. Gharachorloo and S.V. Adve
and L.A. Barroso. Performance of Database
Workloads on Shared-Memory Systems with Out-of-
Order Processors. In Proceedings of the 8th
International Conference on Architectural Support for
Programming Languages and Operating Systems,
pages 307–318, October 1998.

[19]M. Rosenblum, E. Bugnion, S. Herrod, E. Witchel,
and A. Gupta. The Impact of Architectural Trends on
Operating System Performance. In Proceedings of the
15th Symposium on Operating Systems Principles,
pages 285–298, December 1995.

[20]Standard Performance Council. The SPEC95 CPU
Benchmark Suite. http://www.spec.org/cpu2000.

[21]K. Keeton, D.A. Patterson. The impact of Hardware
and Software Configuration on Computer
Architecture Performance Evaluation. In the first
Workshop on Computer Architecture Evaluation
using Commercial Workloads.

[22]R. Hankins, M. Annavaram, T. Diep, H. Eri, B.
Hirano, H. Nueckel, and J. P. Shen. Comparing and
Contrasting OLTP Workload Scaling on IA32 and
IPF. October 2003. http://www.intel.com/research.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

