
1© Derek Chiou

FPGA-Accelerated Simulation
Technologies (FAST): Fast, Full-System,
Cycle-Accurate Simulators

Derek Chiou, Dam Sunwoo, Joonsoo Kim,
Nikhil Patil, William Reinhart, D. Eric Johnson,

Jebediah Keefe, Hari Angepat

University of Texas at Austin
Electrical and Computer Engineering

DOE Career, NSF, SRC,
Intel, IBM, Freescale, Xilinx

12/4/2007 MICRO 2007 2

Test of size

First, Some Terminology

Host: the system on which a simulator runs
Dell 390 with a single 1.8GHz Core 2 Duo and 4GB of RAM
A Xilinx FPGA board

Target: the system being modeled
Alpha 21264 processor
Dell 390 with a single 1.8GHz Core 2 Duo and 4GB of RAM

Host

Simulator

Target

Your desktop

Simplescalar (sim-alpha)

Alpha 21264

12/4/2007 MICRO 2007 3

Test of size

FAST Computer System Simulator Goals
Fast: as fast as possible

~ 2-3 orders of magnitude slower than target
Fast enough to run real datasets to completion
Useful to software developers (performance tuning)?

Timely: Available during architectural phase
Accurate: produce cycle-accurate numbers
Complete: run unmodified operating systems,
applications, peripherals…
Transparent: full visibility, no performance hit
Relatively Inexpensive
Flexible: quick changes
Complex Targets: x86, PowerPC, OoO

12/4/2007 MICRO 2007 4

Test of size

FAST Prototype in Real Time

12/4/2007 MICRO 2007 5

Test of size

Speculative Functional/Timing Partitioning
Proven partitioning (FastSim)

FM executes instructions, pushes
instruction trace to TM
If functional path != timing path, TM
forces FM to rollback

Eg., branch mis-speculation,
resolve

Clean inst trace/rollback interface

Factorized, not partitioned!
(FM + TM) < (monolithic simulator)
FM fairly simple, only functionality
TM fairly simple, only timing

Functional
Model

(ISA + peripherals)

Timing
Model

(Micro-architecture)

Instructions
Architectural registers

Peripheral functionality
…..

Caches
Arbitration
Pipelining
Associativity
….

Inst trace

12/4/2007 MICRO 2007 6

Test of size

What Is A FAST Functional Model?
Requirements

Fast
Full System
Generates instruction trace
Supports rollback

Hardware functional models (very fast)
Real processor doesn’t support trace/rollback
FPGA implementation difficult to make complete

x86, boots Windows?
Software functional models exist today

Bochs, QEMU, Simics, SimNow, SimOS, etc.
Relatively fast, full system

Run on fastest hardware we know about to execute an ISA
Can be modified to generate trace/support rollback

12/4/2007 MICRO 2007 7

Test of size

What is a FAST Timing Model?

TraceTrace

0x2

addr
inst

Instruction
Memory

Add

rd1

GPR File

rr1
rr2

wr
wd rd2

we

Immed.
Extend

M
0

2

raddr
waddr

wdata

rdata

re

Data
Memory

ALU
algn

1

3

wePC A

B

MD1

Y

MD2

IR

IR IR IR

R

Bypass/interlock I1

I2

Stats gathering in hardware
=> no performance impact

12/4/2007 MICRO 2007 8

Test of size

trace

Step 1:
Improving Performance via Parallelization

Parallel slowdown due to communication?
FM runs ahead, speculatively, round-trip communication infrequent
Round-trip communication only when (functional path != timing path)

Microprocessors have same problem
Multiple issue, deep pipelines only work if predicted path is correct

FM like perfect front end of processor, real uArch (TM) slows it down
The better the target micro-architecture, the faster the simulator

Functional
Model

(ISA + peripherals)

Timing
Model

(Micro-architecture)

HostHost Host

12/4/2007 MICRO 2007 9

Test of size

Step 2: Parallelizing Timing Model

Software timing model is bottleneck. Parallelize?
Difficult to parallelize in software (very tight dependencies)
Practical limitation of number of processors that can communicate quickly

Hardware-based (FPGA) timing model
Parallelizes nicely in hardware
TM very simple since does not implement functionality
Latency tolerant, infrequent round-trips

trace

Functional
Model

(ISA + peripherals)

Timing
Model

(Micro-architecture)

Host HostFPGA

12/4/2007 MICRO 2007 10

Test of size

Prototype Overview

Software functional model
Eventually hardware functional model, but software sim exists

FPGA-based timing model written in Bluespec
Complex OoO micro-architecture fits in a single FPGA

DRC or XUP

trace

Functional
Model

Software

Timing
Model

Bluespec HDL

Processor FPGA
DRC
Computer

HT Xilinx FPGAPowerPC 405

12/4/2007 MICRO 2007 11

Test of size

Current Prototype Functional Model
Derived from QEMU

Fast (JIT), boots Linux, Windows
Supports x86, x86-64, PowerPC, Sparc, ARM, MIPS, …

Prototype currently supports x86
Added tracing, rollback (implemented with checkpoint)

Including I/O (keyboard, mouse, video)
Hosts

x86 machines
PowerPC inside of an FPGA

PowerPC target by January
about 1 month to port

Dam Sunwoo, Jeb Keefe

12/4/2007 MICRO 2007 12

Test of size

Current Prototype Timing Model

Joonsoo Kim, Nikhil Patil, Bill Reinhart, Eric Johnson

12/4/2007 MICRO 2007 13

Test of size

Modular Timing Models:
Modules + Connectors

Modules model timing functionality
E.g., rename, caches, etc.
Built hierarchically for extensibility

CAM, FIFOs, arbiters, etc.
Branch predictors, Caches, TLBs,
Schedulers, ALUs
Fetch, Decode, Rename, RS, ROB

Many are essentially wires (e.g., ALU)
Often written to execute one operation

E.g., Rename, Cache
Executed multiple times per target cycle
for wider processor, higher associativity
Simplifies implementation, tradeoff time
for space

Connectors connect modules
Abstract timing from modules

Throughput (input, output), delay,
maxTransactions

Stats and tracing

Bill Reinhart

12/4/2007 MICRO 2007 14

Test of size

Microcode Compiler
Intention

Automate generation of new ISA instructions
Automatically retarget new micro-architectures
Necessary for x86

Uses the LLVM Compiler Infrastructure developed at UIUC
http://www.llvm.org

Compile the Bochs CPU model
Bochs is another portable x86 full-system emulator.
Backend retargeted to micro-op ISA

Generates microcode that “runs” on the timing model

Over 99% dynamic inst coverage for most INT benchmarks
floating point instructions not yet supported

Average 1.27 uOps per handled dynamic x86 instruction

Nikhil Patil

12/4/2007 MICRO 2007 15

Test of size

Current Simulator Performance on DRC

0

0.5

1

1.5

2

2.5

3

3.5

Li
nu

x
W

ind
ow

s X
P

16
4.g

zip
17

5.v
pr

17
6.g

cc
18

1.m
cf

18
6.c

ra
fty

19
7.p

ar
se

r
25

2.e
on

25
3.p

er
lb

mk
25

4.g
ap

25
5.v

or
te

x
25

6.b
zip

2
30

0.t
wol

f
am

ea
n

M
IP

S

gshare

BP 97%

BP 100%

Includes Operating System CodeIncludes Operating System Code

12/4/2007 MICRO 2007 16

Test of size

Performance Details
Timing model is current bottleneck

100MHz host cycle (not pushing timing)
Currently taking ~30 host (FPGA) cycles per target cycle, max about 54
cycles (currently max latency defines target clock)
BP is a simple gshare predictor

Functional model
Unoptimized modified QEMU
With perfect BP, immediate return from TM, 5.4MIPS

FM/TM communication
469ns blocking read from Opteron on DRC (has gotten better)

Poll every other basic block
13ns/word for burst write

12/4/2007 MICRO 2007 17

Test of size

Some Related Work (there is a lot)
Software

Functional/timing partitioned
Asim, current M5, Timing-First, Opal all timing model driven

Timing model tells functional model what to do and when to do it

FastSim (Schnarr, et al, ASPLOS 98)
Functional/timing, rollback when functional path != timing path
But, instrumented binaries, not parallelized, no hardware

Hardware
HASim: Hardware ASim (Emer, et. al)

Timing-first
Seven points of communication between FM & TM

Requires infinitely renamed out-of-order FM
Current supports a simplified MIPS ISA

12/4/2007 MICRO 2007 18

Test of size

Conclusions/Future Work
It works
Current FAST simulator prototype

1.2MIPS (unoptimized), about 1000 times slower than target
Timely: during architecture phase
Complete: runs Windows, Linux
Transparent: extensive, hardware-based stats
Relatively inexpensive, easy to build and extend

(Some) future work
Optimize

5MIPS soon, 10MIPS-20MIPS later (hardware FM using uCode?)
More realistic timing model & calibration
Tattler: automatic bottleneck detection
CMP/SMP targets

