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I. BACKGROUND AND MOTIVATION

Conventional cache moves a block of contiguous data
and allocates space for them together, which works well
for applications with good spatial locality. However, many
applications have poor spatial locality. In the multi-core
and multi-program system, contentions at each level of the
memory hierarchy can cause early cache block eviction and
reduce the benefit of locality. When running these applications,
conventional cache suffers from poor effective cache capacity
and high data movement overhead. Storing data that will not
be used before eviction reduces the effective capacity and
degrades performance. In addition, data over-fetching from
main memory to cache wastes bandwidth and energy.

Fine-grained caches [1], which use small cache block size
and only fetch useful data to cache, have been proposed to
improve effective capacity. However, the size of the metadata
needs to be increased to support data identification, state
tracking, and replacement at a smaller data granularity. To
reduce the metadata overhead, one approach is to share the
common tag bits among multiple fine-grained blocks within
one merged block [2] . However, in order to share the common
tag bits, data that can be stored in the same merged block has
constraints. A merged block may not be completely filled and
therefore can waste cache space.

II. DESIGN CHALLENGES AND KEY IDEAS OF THE
PROPOSED DESIGN

To improve the effective capacity, an ideal fine-grained cache
should have 1) low metadata overhead, 2) high data utilization
(useful data/fetched data), and 3) high block utilization (fetched
data/allocated space). The proposed work takes a systematic
approach to maximize the effective capacity and to improve
data movement efficiency by balancing these three factors.

Reduce metadata overhead: Sharing the common bits
in the tag of multiple fine-grained blocks can reduce the
metadata overhead. The fine-grained blocks that can be merged
together must have the same shared tag and index. Each
of the fine-grained blocks has their unique private tag. The
proposed work maximized the length of the shared tag to reduce
metadata overhead. To further reduce the metadata overhead,
the proposed design adaptively increases the merged block size
to share common bits among as many fine-grained blocks as
possible.

Improve block utilization: Prior works [2] keep a fixed
sized of merged block and a static private tag position. The
length and the position of the private tag add constraints on
which fine-grained blocks can be merged together. However,

prior works [2] simply select the LSB of the address bits as the
private tag without considering the application characteristics.
Therefore, many merged blocks is not full because not enough
number of fine-grained blocks can be merged together. This
work proposes private tag selection to increase the possibility
of merging more fine-grained blocks.

Improve data utilization: The unused data wastes both
cache space and bandwidth. In the proposed design, a spatial
pattern predictor is incorporated and optimized to eliminate
unused data transferring.

Reduce control overhead: The total control overhead of
writing the fine-grained block into the cache is higher as
compared to the conventional cache design. In the proposed
design, multiple fine-grained blocks are merged together at
the memory controller. The control overhead can be reduced
by using the same set of control signals to write multiple
fine-grained blocks.

III. AN OVERVIEW OF THE PROPOSED FINE-GRAINED
CACHE

Supporting merged blocks with variable length can improve
the effective capacity and thereby reduce the miss rate. However,
additional logic and tag bits should be added, which increases
the cache access time. Therefore, in the proposed design, the
L1 cache has a fixed merged block size to maintain low access
delay; whereas the L2 cache has merged blocks with variable
length to improve effective capacity and reduce the miss rate.

An overview of the proposed design is shown in the Figure 1.
Both L1 and L2 caches can store merged blocks. In the 4-
way L1 cache, each set stores 32 words in four fixed 64B
merged block. For an 8-way L2 cache, the number of the
merged blocks in one cache set can vary from one to sixteen.
To identify each merged block, 16 shared tags are required to
support the maximum number of merged blocks, which leads
to a large metadata overhead. Moreover, to lookup for a merged
block in a set, sixteen comparators are required if all of the
merged blocks are 32B. To reduce the overhead, the proposed
fine-grained cache limits the number of merged blocks such
that the number of comparators for the shared tag remains the
same as it is in the conventional cache. The merged blockIDs
are used to indicate which shared tag should be used for each
32B space (minimum merged block granularity) in the data
array. This mechanism allows non-contiguous cache space to
be allocated to one merged block. Data transferring between
L1 and L2 is chosen to be physical block granularity, which
can improve the data movement efficiency. A spatial pattern
predictor is located at the memory controller and trained by the
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Fig. 1. The proposed design with 16 private 4-way L1s and a shared 8-way L2 cache.
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Fig. 2. Normalized performance. The proposed fine-grained cache has a fixed 64B merged block size for L1 and a variable merged block size (32-512B) for
L2. The upper bound is estimated by increasing the cache capacity to have 100% of data utilization and space utilization based on the tested applications,
which also has a compressed tag array using C-PACK+Z [3].

0% 

50% 

100% 

Ef
fe
ct
iv
e	
Ca

pa
ci
ty

Baseline Amoeba Elastic-cache Proposed	

Fig. 3. Normalized effective capacity (GEO-MEAN).

eviction information. The merge logic in the memory controller
determines which partial blocks can be merged together and
the sizes of each merged block.

IV. NOVELTY AND CONTRIBUTIONS

This work makes the following contributions:
Merging fine-grained blocks with private tag selection.

Sharing tag bits among fine-grained blocks reduce metadata
overhead. Prior works use a long private tag to improve merging
efficiency. Instead of increasing the length of the private
tag, carefully selecting private tag can increase the merging
possibility. This scheme reduces the metadata overhead by
increasing the length of the shared tag and improving the block
utilization.

Supporting variable length merged block. A large merged
block can reduce the metadata overhead by sharing the tag
bits with more fine-grained blocks; whereas a small merged
block can improve the block utilization when there are not
many fine-grained blocks that can be merged. Hence, this work
supports variable length merged block to minimize the metadata
overhead and improve block utilization.

Grouped line-fill to reduce control overhead. Multiple
fine-grained blocks can share the same set of control signals if
they can be merged and refilled together. A new merging logic
is added at the memory controller to merge fine-grained blocks
before accessing the DRAM. Hence, the fine-grained blocks
within the same merged block are grouped before refilled to the
last level cache. This scheme can improve both performance
and bandwidth efficiency.

V. MAIN RESULTS

This work evaluates the proposed design using HPCC, SPEC-
OMP, SPLASH-2, Mantevo, and SPEC2006 benchmarks and
is compared with Amoeba [1] and Elastic caches [2] on a
16-core system with 64KB private L1 caches and an 8MB
shared L2 cache. As shown in the Fig. 2, the proposed design
performs significantly better as compared to the baseline and
other fine-grained caches. This is because the proposed design
can achieve the highest effective cache capacity (Fig. 3).
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