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Abstract—This paper presents a Look-Up Table (LUT) based
Processing-In-Memory (PIM) technique with the potential for
running Neural Network inference tasks. We implement a bitline
computing free technique to avoid frequent bitline accesses to the
cache sub-arrays and thereby considerably reducing the memory
access energy overhead. LUT in conjunction with the compute
engines enables sub-array level parallelism while executing com-
plex operations through data lookup which otherwise requires
multiple cycles. Sub-array level parallelism and systolic input
data flow ensure data movement to be confined to the SRAM
slice.

Our proposed LUT based PIM methodology exploits sub-
stantial parallelism using look-up tables, which does not alter
the memory structure/organization, that is, preserving the bit-
cell and peripherals of the existing SRAM monolithic arrays.
Our solution achieves 1.72x higher performance and 3.14x lower
energy as compared to a state-of-the-art processing-in-cache
solution. Sub-array level design modifications to incorporate LUT
along with the compute engines will increase the overall cache
area by 5.6%. We achieve 3.97x speedup w.r.t neural network
systolic accelerator with a similar area. The re-configurable
nature of the compute engines enables various neural network
operations and thereby supporting sequential networks (RNNs)
and transformer models. Our quantitative analysis demonstrates
101x, 3x faster execution and 91x, 11x energy efficient than
CPU and GPU respectively while running the transformer model,
BERT-Base.

Index Terms—Processing-in-memory, SRAM, Look-up table,
Neural networks

I. INTRODUCTION

The rapid growth of application data volumes and the

increasing gap between speed of logic and memory calls

the conventional von-Neumann architecture based computing

systems into questions regarding their compute efficiency. The

excessive energy and latency costs associated with data move-

ment have resurrected interest in processor-in-memory (PIM)

architectures [1], [2]. These designs blur the gap between

compute engines and storage to alleviate the data movement

costs. Several emerging non-volatile memory technologies

such as Resistive Random Access Memory (RRAM) [3],

[4], [5], [6], [7] cross-point arrays augment the primary role

of data storage with intrinsic computation support for the

*This work was done as part of internship at Processor Architecture
Research Lab, Intel Labs, Bangalore, KA, India.
This work was supported in part by Semiconductor Research Corporation
(SRC) Center for Research in Intelligent Storage and Processing in Memory
(CRISP).

multiply-and-accumulate (MAC) operation facilitating various

PIM design explorations. Further, the data-intensive nature of

many emerging applications such as deep neural networks

(DNN) benefit from in-place data manipulation abilities of

PIM architectures.

SRAM memories predominantly have been on-chip caches

in processor architectures constituting up-to 70% of the overall

chip area [8]. The SRAM based PIM solutions take advantage

of the same, and convert the huge memory area into compute

units. They also leverage the potential for much higher internal

data bandwidth within the cache than to external logic. Most

of the existing state-of-the art SRAM based PIM designs [9],

[10], [11] perform computation by asserting multiple rows of

memory to establish data-dependent bitline discharge. This

technique is used in conjunction with modified sense am-

plifiers or the augmentation of digital logic at the edge of

the SRAM array to perform various logical functions within

an array [11]. While such bitline computing offers potential

for enormous parallelism in computing across all columns

of a large cache, it imposes significant energy consumption

involved with charging and discharging the bitlines. This

overhead can become excessive for complex operations of

DNN workloads that need to be broken down into a large

sequence of simple bitline operations

Our work introduces a LUT-based bitline computing free

PIM solution for in cache acceleration of various DNN work-

loads. It efficiently leverages the array-level parallelism for

performance gains, while reducing the energy consumption

of bitline computing approaches. The lookup table (LUT)

based computational approaches have been widely used in

the FPGA and custom-ASIC architectures to implement a

wide variety of functions [12], [13], [14]. Specifically, Taylor’s

series expansion of functions (exponent, trigonometric func-

tions) is leveraged for hardware implementation using a finite

number of stored entries in a LUT along with minimal logic

[15]. Further, there have been approaches that configure the

on-chip SRAM in Field Programmable Gate arrays (FPGA)

for supporting fixed-precision multiplications to augment the

hardwired multiply-accumulate logic for DSP applications

[16], [17]. Similarly, LUTNet [18] makes use of LUTs for

realizing XNOR-gate to run Binarized Neural Networks. These

existing LUT-based hardware implementations inspire us to

design a LUT-based PIM architecture, as an alternative to
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bitline based architectures.

DNN workloads (CNNs, RNNs, Transformer models etc.)

comprise various operations such as multiply-and-accumulate

(MAC), normalization, element wise scalar arithmetic, and di-

verse range of non-linear functions like Sigmoid, Tanh, ReLu,

and Softmax. In order to support end-to-end acceleration of

these diverse set of workloads, accelerators need to incorporate

the necessary compute logic for all the above mentioned

operations, and thereby potentially incur area and static power

consumption overheads. The reconfigurability provided by the

LUT based compute engines aids in performing these diverse

operations within the memory efficiently without sacrificing

logic area overhead needed for these special functions. Most

existing inference accelerators for DNN workloads incorporate

integer-based (reduced precision) computations by leveraging

quantization techniques for improved latency and energy con-

sumption. In addition, recent works on quantization demon-

strate that, it is beneficial to have various integer bit precision

for different network layers for faster inference times, and

energy efficiency without compromising on the accuracy. The

need for varied bit precision, and the efficiency of DNNs with

reduced compute precision further makes a better case for

LUT-based approaches. LUTs can be reconfigured to support

different precision and fewer LUT entries are required for

reduced precision operations.

LUT based approaches can replace a sequence of operations

in bitline based SRAM architectures with a single read opera-

tion from a memory subarray. The energy and latency benefits

for such LUT based operations are especially significant for

primitives that fundamentally take more cycles to compute

such as multiplication or division. However, the integration

of such LUT functionality for individual functions in custom

designs is significantly different from our goal to support LUT

based compute within SRAM caches. The LUT based compute

should result in minimal perturbation in either latency or power

consumption to the basic operations of read and write required

from the caches.

Towards exploring the design space of LUT based compute

in caches, this paper makes the following contributions.

• We present a bitline computation free PIM architecture

(we name it BFree) capable of computing various com-

plex neural network primitives at the subarray granularity.

Alternate to bitline computing, BFree does not make use

of multi row activation and repetitive bitline accesses

while performing complex PIM operations like MAC,

division, square root, exponent, sigmoid, tanh, softmax,

etc.

• BFree transforms the subarray into a LUT-based compute

engine and makes use of a tiny PIM controller named

BFree compute engine (BCE). The BCE also aids in

inter/intra subarray communication. We describe quali-

tatively and quantitatively the energy efficiency of this

architecture as compared to state-of-the-art PIM solutions

using bitline computing approach.

• We enable the systolic data movement strategies for the

matrix multiply and MAC-based operations within the

memory which leads to further improvement in perfor-

mance by overlapping computation with input load time.

• We demonstrate the reconfigurability of the BFree archi-

tecture with different precision execution of the layers

within the same network (switching between 4-bit, and

8-bit precision). We also show flexibility by execut-

ing different DNN workloads (CNN, RNN, Transformer

models) within the same fabric.

Rest of the paper is organized as follows. Section II de-

scribes the background of neural network primitives, memory

organization and motivates bitline compute free PIM for en-

ergy efficiency. Section III focuses on the BFree architecture.

Section IV maps kernels in various neural networks on to

the BFree architecture with PIM support. Section V describes

in detail the analysis strategy and evaluation of our work.

Section VI briefs about the relevant related works. Section

VII summarizes and concludes.

II. BACKGROUND & MOTIVATION

In this section, we give an overview of cache memory

organization in the existing general purpose architectures, and

the basics, design considerations and various challenges in

bitline computing-based PIM architectures.

A. Cache Organization

SRAM memory in a general purpose processor is typically

organized as multiple cache hierarchies. Fig.1 shows the

structure of the last level L3 cache hierarchy (similar to Intel

E5 processor with 35MB L3 cache) for a specific processor

with 14 cores. A typical L3 cache consists of multiple ‘slices’

and each of them will have direct access to its corresponding

processor core. Fig.1(a) illustrates an L3 cache hierarchy made

up of 14 slices. Slice0 can be accessed by its corresponding

Fig. 1. Memory organization in a typical last level cache. (a) Slices and ring
interconnect with NUCA support. (b) Slice partitioned into multiple banks,
and each bank further into sub-banks. (c) 8KB subarray with 1024 rows and
64 cells in a row. (d) Subarray partitions and memory peripherals. (e) Sub-
array partition constituting of SRAM cells with precharge circuitry and sense
amplifiers for data access.
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processor core0 directly and access to other cores is estab-

lished through a ring interconnect. Fig.1(b) shows a single

slice with four banks, each bank consists of ten sub-banks and

the sub-bank is further divided into 8KB subarrays. Every sub-

array has four partitions (see Fig.1(c)) along with the necessary

sub-array peripherals and timing circuitry (not shown in the

figure). This kind of memory organization helps to retain the

overall memory density by containing all the peripherals in

the sub-arrays and also by avoiding splitting of address and

data bus. Sub-array peripherals are responsible for address

decoding (decoder), MUXing the entire row of data into the

data bus (column multiplexer), precharge circuit (precharging

the bitlines while reading), sense amplifier to sense the bitline

discharge and write drivers to load the bitlines with the

data to be written. Any PIM strategy which disturbs this

tightly coupled sub-array organization will either negatively

impact the data access (memory property) or increase the PIM

execution latency. BFree architecture considers the same cache

organisation and consciously incorporates the PIM compute

circuitry at sub-array level with minimal perturbations to the

peripheral circuitry and memory circuitry at bit-level or bank

level. The resulting design has minimal impact on conventional

memory performance and still achieves massive parallelism.

B. Bitline Computing and Design Considerations: Overview

One of the most common PIM techniques is to assert multi-

ple wordlines where the input operands are located and estab-

lish a bitline discharge to obtain the computed output. Boolean

operations take one compute cycle when both operands are

stored in the same partition of the subarray. These compu-

tations are limited to bitwise operations. In order to obtain

massive parallelism while performing multibit logic operations

such as addition or MAC, input operands have to be stored

in bit-serial fashion and the computation takes more than one

cycle. However, certain constraints have to be met in designing

the memory array with robust multiple row activation (MRA).

Memory operations are very sensitive to noise especially under

low voltage and scaled technology nodes. Activating multiple

rows simultaneously for data read will cause a write bias

condition and there are chances of data corruption. Zhang et al.

[19], show that the MRA operation results in decrease of noise

margin index. To address this, wordline voltage needs to be

reduced to at least two-thirds of the supply voltage. Reduction

in the supply voltage directly impacts the computation speed

while needing to activate separate wordline under driving

logic. Also, tweaking of wordline decoder is required and two

sense amplifiers need to be designed (conventionally one) per

column on the memory. In addition, additional computation

logic (to execute addition and MAC) is required near the sense

amplifier and column-wise data access extension need to be

introduced. Even with all these PIM peripherals, operations

take multiple compute cycles (approximately n cycles for add

operation, and n2 cycles for multiply operation). While the

area overhead is still small compared to the overall chip area,

the high number of activations on the bitline impede the energy

efficiency.

Fig. 2. Energy and Latency breakdown of a data access showing the impact
of the interconnects

C. Bitline Computing: Pros and Cons

Fig.2 shows the breakdown of data access latency and

energy in accessing an SRAM slice. Interconnect between the

subarray and the slice port contributes to more than 90% of

overall latency and energy. The sub-array access dominated by

the bit line access contributes 6% and 9% to overall latency

and energy. Hence it is desirable to avoid data movement

through the highly parasitic interconnect and compute within

a subarray. Further, if the bitline accesses are reduced the

most significant part of subarray energy will also be mitigated.

Further, massive parallelism can be enabled by concurrent

processing at individual sub arrays. PIM performance can

be determined by the number of operations per PIM cycle

(PIM-OPC). PIM-OPC is an indicator of the degree of par-

allelism within the subarray. For example, considering the

column muxing of 4:1, for the subarray in Fig.1(c), 8 Boolean

operations (8-bit operands and bit-parallel computing) are

possible in one PIM cycle. Hence PIM-OPC in this case is 8

considering all the 64 bitlines computing in parallel. Similarly,

multiplication requires operands to be stored column-wise for

bit-serial computation [9], [20], [21] through MRA. Even in

this case, computation parallelism across all the bitlines is

achieved. However, a 8-bit multiplication takes 102 PIM cycles

[9]. Therefore PIM-OPC, in this case, is approximately 0.63

(the number of bitlines divided by the PIM cycle = 64/102)

which is much less than 1. To achieve higher PIM-OPC, the

number of columns within each subarray partition needs to

be increased. An increase in the number of cells per row is a

drastic change in the organization that will have serious im-

plications on memory performance and is not recommended.

Any technique with fewer PIM execution cycles eliminates the

need for bitline granular computation while achieving the same

performance through subarray level parallelism. Reading the

operands from the subarray and designing a compute logic

with fast execution (less than a PIM cycle) will alleviate

the stress on bitline thereby achieving energy efficiency and

performance improvement due to reduced PIM cycles.

D. Bitline Computing Alternatives

Various compute approaches can be adopted at the subarray

level to perform bitline free computing. A straightforward

approach is to integrate specialized hardware within each

subarray. Neural networks perform multiple operations at

every level. Consequently adding multiple specialized units

will result in significant degradation of memory density

and adversely impact normal memory operations. Instead,

we introduce BFree, a LUT based compute that provides
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configurable support for multiple operations. This approach

minimally increases the memory area by introducing only

hardware that assists in combining LUT entries to realize

operations such as multiply, MAC, division, activation and

pooling for varied input bit widths. The proposed design

implements a LUT in the subarray that stores precomputed

outputs and an associated small control logic to offer flexibility

in terms of functionality, without the need to modify the

subarray peripherals. BFree adopts the subarray level parallel

computing approach, incorporating LUT at every partition

within the subarray and BCE logic at the edge of the subarray,

thus obtaining high energy efficiency for applications with

numerous MAC and arithmetic operations.

In the subsequent sections, we will describe in detail qual-

itatively and quantitatively about LUT design strategy, BFree

architecture, design space exploration for enabling seamless

systolic dataflow within the cache.

III. BFREE ARCHITECTURE

In this section, we provide an overview of BFree archi-

tecture and its support for various kernels in diverse DNN

workloads. BFree architecture incorporates compute capabili-

ties at sub-array granularity in the conventional cache memory

organization. Few rows in each partition of the sub-array are

equipped with custom peripheral circuitry for the reduced cost

access for LUT entries. In addition, BFree compute engine

(BCE) comprises of additional control and compute logic,

hardwired multiply-LUT to efficiently support the execution

of various kernels. We discuss about the organization of BCE

and its execution flow, LUT-based support for various kernels

and the efficient systolic dataflow incorporated in the proposed

BFree architecture.

A. BFree Sub-array and BCE Organization

Fig.3 shows the architectural overview of the sub-array

with LUT and BCE. Conventionally, the sub-array is divided

into 4 partitions, and all the partitions share the same timer

and decoder logic (labelled as T&D). BFree sub-array design

incorporates reduced access cost rows for LUT and CB

Fig. 3. BFree architecture at the sub-array level showing LUT, pipeline stages
of the BCE and CB address field

storage. The configuration block (CB) stores the metadata such

as bit-precision, operation, number of iterations, starting and

ending address for the computation to be performed. BCE is

responsible for orchestrating the PIM operations at the sub-

array granularity, as well as aid in the systolic communication.

It consists of fetch and decode logic for the PIM instructions,

control logic to schedule LUT accesses and other arithmetic

operations in sub-array and BCE. Since multiplication op-

eration is the most widely used compute operation in the

DNN workloads, a hardwired multiply-LUT (ROM in the

Fig.3) is introduced in the BCE to reduce the number of

accesses to sub-array partitions. BCE snoops on the sub-array

data/address bus for scheduling the PIM operations and does

not incur any additional interconnect overheads at sub-arrays.

BCE incorporates a simple three stage in-order pipeline. In

the first stage, it reads the metadata from CB and decodes the

PIM instruction. Decoded instruction consists of information

such as operation parameters, starting and ending address of

the weights stored in the sub-array. In the second stage, it

generates the necessary LUT addresses (in accordance with

the sub-array address) based on the operands and the type

of operation. In the third stage, the partial results from the

LUT lookup are further accumulated/processed based on the

operation and the final result is stored in the output registers.

B. Look Up Table (LUT) Implementation

The number of entries in the LUT plays a significant role in

determining the PIM performance. For example, to compute

the output of 8-bit multiplication in one cycle, LUT should

store 65,536 (28×28 input combinations) pre-computed en-

tries (each of two bytes) which makes the design very imprac-

tical. Hence, the design should consider the tradeoff between

number of LUT read cycles and the size. Each sub-array in

the BFree design stores the LUT entries and configuration

block, which stores the metadata (operands, type of operation

etc.) corresponding to the PIM instructions. We explored three

distinct design strategies for carefully optimizing LUT latency

and area. In first approach, we design a standalone LUT with

Fig. 4. (a) Dedicated low cost access LUT rows in one of the four partitions
of a sub-array. (b) Local precharge and segregated bitline for fast LUT access.
(c) Latency and energy comparison

91



separate LUT peripherals. A LUT for 4-bit multiply operands

requires two 256 8-bit entries with a total memory size of

256 bytes. This approach significantly impacts the sub-array

area and performance. In the second approach, we allocate a

certain portion of the existing memory sub-array for storing

the LUT entries. Fig.4(a) shows one of the four partitions of

a sub-array in which two rows are dedicated for LUT entries.

Hence, a sub-array with four partitions will have in total eight

dedicated LUT rows (64 entries). LUT access latency and

energy will be the same as accessing any row of a partition

since the LUT shares the parasitic bitline of that partition (see

Fig.4(a)). While memory density is unaffected, high access

latency and energy will make the PIM operations inefficient.

In the third approach, we designed decoupled bitlines for

the LUT rows alone for reduced access cost. In cache mode

(lut en = 0), a single bitline runs across the entire column cells

as shown in Fig.4(b). In PIM mode (lut en = 1), we activate

a local precharge circuit connecting only to the LUT region

of the sub-array partition. This reduces additional load on the

bitline and thus making data lookup 3x faster and 231x energy

efficient, while utilizing the already available array peripherals.

High energy gains are attributed to the higher Vth transistors

used for the 2 LUT rows, and the precharge circuitry, as well

as, the minimum sized precharge drivers. Introduction of the

additional precharge circuitry increases the sub-array area by

a meager 0.5%.

C. LUT: Supported Operations

This section describes the various optimizations and map-

ping strategies adopted to support diverse operations in the

DNN workloads to LUT PIM operations. Naive mapping of

compute operations to LUTs require huge storage space, which

cannot be accommodated at cache sub-array granularity. We

adopt several optimization strategies to reduce the LUT storage

space.

1) Multiplication: For reducing the number of LUT entries,

we only store the entries for 4-bit operands in the sub-arrays.

For supporting multiplication operation for higher precision

operands (8-bit, 16-bit etc. ), BCE decomposes the operands

into smaller operands with 4-bit precision and accumulate

Fig. 5. Execution steps of BCE when both operands are odd with reduced
LUT entries for multiply operation

Fig. 6. BCE execution pipeline showing initialization, computation and
writeback

the partial products accordingly. For a LUT supporting 4-

bit operands, the maximum number of entries required for

multiplication operation is 256. However, we reduce the

number of LUT entries to just 49 by utilizing fundamental

multiplication properties illustrated in [17]. Preloaded LUT

entries are shown in Fig.5. We store the products in LUT

only if both the operands are odd numbers. If either of the

operands are powers of two, then BCE shifts the other operand

before adding it to the partial result. If the operands are both

odd numbers, then BCE directly fetches its product from the

LUT. If both the numbers are even but non-powers of two,

then BCE decomposes it into multiples of odd number and

powers of two, and appropriately shift the partial product based

on the odd part fetched from the LUT before adding it to

the partial result. These decisions are made by the operand

analyzer within BCE logic (described in Section 3.1). Hence,

decomposing the operation between the LUT and the operand

analyzer will ensure fewer LUT entries. LUT entries can be

further reduced by half, by storing only the upper or lower

triangle entries but this will lead to reduced PIM parallelism.

Fig.6 illustrates the detailed execution steps for an example

matrix multiplication operation with 4-bit operands. In cycle 0,

BCE reads the contents of CB and decodes the address of first

row of M1 along with the matrix dimensions. In cycle 1, first

column of M2 is streamed in (input streaming are explained

detailed in Section IV) from the external bus and first row of

M1 is read from sub-array using the generated addresses onto

the BCE registers. In the next three cycles, BCE performs three

multiplication and two addition operations to generate the first

element of the output matrix. Since M1 data (“4” in this case)

is in powers of 2, we do not access the LUT in cycle 3 but

perform left shifting for multiplication. In cycle 4, two left

shift operations are performed since the input even number is

split into two powers-of-two numbers. LUT is accessed only

in cycle 5 since both inputs are odd numbers. ‘Output will

be written back in cycle 6. This pipeline continues until the

end of complete matrix multiplication. Since initialization is

performed only once during the beginning, computation cycles

are proportional to number of multiplications with a small

overhead of reading the operands. Even for higher bit-width

operands (8-bit, 16-bit), the BCE decomposes the operands

into 4-bit operands for the multiplication operation and accu-

mulates the partials in a similar pipelined manner. Further, we

show an optimized matrix multiply execution which increases

the number of MAC (8-bit operands) operations per cycle from

0.5 to 4.

Optimizing BCE for matrix multiplications: The neural
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Fig. 7. BCE optimized for matrix multiply, increasing number of multiply
operations by 8 times

network workloads are dominated by the convolution or matrix

multiply operations. Therefore, increasing the number of mul-

tiplications per cycle leads to improved performance. Every

access of the LUT for the selected operand utilizes only a

byte of data, thereby under-utilizing the LUT read operation.

In the case of matrix multiply, we can take advantage of

the LUT read by scheduling the inputs appropriately. Fig.7

shows the optimized BCE unit with efficient input scheduling.

The input registers hold the first rows of matrices A and B.

At timescale 1, the lower nibble (LS-4) of A00 selects the

appropriate LUT from the hardwired multiply-LUT (MULT

ROM in Fig.7) in the BCE. This enables all the outputs with

respect to the B matrix (by use of the switch MUX comprising

of 16x{8:1 MUX} and I/O is of a byte length) stored in

the input register and accumulates the values into the output

registers. In the next timescale, the upper nibble (MS-4) of A00

performs the same sequence of operations, thereby achieving 8

multiplications in 2 cycles. The subsequent row of matrix B is

loaded into the input register. LS-4 and MS-4 of A01 are fed at

timescales 3 and 4 respectively. The hardwired multiply-LUT

in the BCE reduces the bus traffic and achieves seamless data

movement within the memory. In addition, the intermediate

values generated are stored in the reduced access cost rows of

sub-arrays to further minimize the access time and energy.

2) Division: Pooling operations in a neural network are

generally used for down-sampling. Max/Min pooling are easily

supported with the help of adder block in the BCE. The

average pooling involves calculating the average across the

patches of input map based on the filters. This operation

requires accumulating all the entries of input matrix and

dividing it by the total number of entries. For the division

operation, we adopt the LUT-based approach proposed in the

[22]. It uses Taylor’s series expansion of the operands for

faster division operation, reduced LUT entries and performs

the division operation using the Equation 1. X and Y are the

division operands represented with 2m bits. Yh and Yl are the

upper and lower m-bits. The input operand values are mapped

to [1,2) using the shift operations (the shift counter value is

stored to re-map the final result). Next, X(Yh−Yl) and 1/Y 2
h

RouterRouter

Sub-array 
1

Sub-array 
2

RouterRouter

Sub-array 
1

Sub-array 
2

Router

Sub-array 
3

Router

Sub-array 
3

Sub-array 
8

Sub-array 
8

Router

Router

Reduction across 
the sub-arrays in 

the sub-banks

Input 
streaming 
across the 
sub-banks

{0:7}B {8:15}B {16:23}B {56:63}B

Fig. 8. Routers introduced into slice for systolic flow between sub-arrays

values are calculated concurrently using the LUTs and adder

logic in BCE. Finally, the computed result is re-mapped to the

original data range using the shift operations.

X
Y
≈ X(Yh−Yl)

Y 2
h

; X ,Y ∈ [1,2) (1)

3) Activation Functions: The exponent, sigmoid and tanh

operations are implemented using LUT based on the piecewise

linear approximation, proposed in [23], [24], [25], [26], [27].

The piecewise linear approximation for the exponent operation

is shown in the Equation. 2, where S is the number of

piecewise segments (for sigmoid and tanh, replace ys
l with

appropriate function).

f s(x) = αs ∗ (x− xs
l )+ ys

l = αs ∗ x+(ys
l −αs ∗ xs

l )

x ∈ [xs
l ,x

s
r],y

s
l = exs

l ,s ∈ [1,S]
(2)

LUT stores the values of αs and (ys
l −αs ∗ xs

l ) corresponding

to xs
l . Similarly, exponential operation in softmax is also com-

puted using the LUT approach and the results are accumulated

for further normalization operation. The normalized operation

(involves division) is performed using the above illustrated

division operation.

D. BFree Systolic Dataflow Within the Slice

For incorporating the systolic dataflow within the slice, we

augment the conventional cache sub-array level interconnect

with simple routers. Conventional interconnect consists of

data-in, data-out, and address bus from the port to every sub-

array. For any memory access, all the sub-arrays in a particular

sub-bank (determined by the address) will be activated since

the data is stripped across the sub-bank (data bus (DIN/DOUT)

in Fig.8). Conventional interconnect in conjunction with BCE

supports data connectivity between the sub-arrays in the same

column, for example, sub-array 1 of sub-bank 1 shares con-

nectivity to sub-array 1 of sub-bank 2. Whereas, the routers

are used to provide connectivity between sub-arrays in the

same sub-bank as shown in Fig.8. The interconnects are

unidirectional; hence router connects data-in of a sub-array

to data-out of the neighbouring sub-array. The data during the

systolic operations are stored within the registers in the BCE to

allow seamless dataflow. The reduction of the partial products

are across the sub-arrays local to the sub-bank, whereas the
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Fig. 9. (a) Weight filters and input activations (b) Systolic mapping of naive convolution operation (c) Systolic mapping of convolution operation transformed
into matrix multiplication. Input matrix is in its transposed form. Note that the dimensions of the activations and filters, and the number of sub-arrays are for
illustrative purposes only.

input streaming are across the sub-banks as shown in Fig.8.

The systolic data movement within the slice is completely

uniform at any given time, thus easily managed by the BCEs

in conjunction with controllers (discussed in section 4.3).

IV. NEURAL NETWORK MAPPING AND

EXECUTION

In this section, we discuss various mapping and execution

strategies to support the execution of diverse DNN workloads

on the BFree architecture. The network parameters such as

weight filter size, stride, and input size have significant impact

on the overall data movement and available parallelism in

execution. For accelerating the convolution operation, it can

be formulated as matrix-matrix multiplication to leverage

the operand re-use capabilities. However,in the matrix-matrix

multiplication formulation, the input vectors to each layer need

to be unrolled, resulting in large storage requirements. If there

is enough space to store all the unrolled intermediate features

(which will be fed as inputs to the next layer), it is beneficial to

adopt matrix formulation, otherwise, we perform conventional

convolution operation. BFree incorporates efficient support

for both conventional convolution and matrix-matrix multi-

plication operations. In addition, BFree also supports various

non linear functions such as Sigmoid, Tanh, and Softmax to

support other (other than CNN) widely used networks such as

recurrent neural networks and transformer models.

A. Convolution Mapping

Consider the filter and input activations shown in Fig.9(a).

An element in weight tensor Wn,i, j corresponds to jth element

in the ith input channel of nth filter. Ii, j is the jth element

of ith channel of input activation. A convolution operation

is essentially scanning the filter across input activations and

performing dot product between the corresponding elements

at each position. Fig.9(b) shows the systolic dataflow and

mapping of weight filters for naive convolution operation.

To setup the systolic dataflow for convolution operation, we

distribute the weight tensors as follows: different filters are

distributed across the columns of sub-arrays and the input

channels of a filter are distributed across the rows of sub-

arrays within a column. For instance, in Fig.9(a) there are n
different filters with three input channels each. Input channel-

1 of filter-n is loaded onto the sub-array at 1st row of nth

column. Now at every step, one set of input activations from

channel-i are supplied to all the sub-arrays in row-i. The BCE

performs dot product between these two vector of elements

and forwards the partial product to the adjacent sub-array

in vertical direction. The partial products get accumulated at

every sub-array within a column to form one element in the

output feature map. Essentially, each column produces one

element of output feature map at every step.

B. Matrix Multiply Mapping

Convolution operations can be converted into a 2D matrix-

matrix multiplication as discussed in [28]. This is accom-

plished by transforming the filters with dimensions (n, i, j)
into a matrix of dimensions (n∗ i, j). Since the weight matrix

is read only during the inference phase, it is statically unrolled

into the matrix format. Similarly the input vector has to

be transformed into a 2D matrix to perform matrix-matrix

multiplication. However, transforming the input feature map

is not as trivial as transforming the weight matrix. Every

row of the transformed matrix contains the elements that

get multiplied with a filter in one convolution step. This

corresponds to a matrix with number of rows equal to the

number of convolution steps per filter, which is dependent of

the stride and size of the filter. Consequently, there could be

redundant copies of elements based on the stride between two

convolution steps, leading to wasted memory space as shown

in Fig.9(c). Note that the input activation matrix shown in

the figure is in its transposed form. Since the input activation

for intermediate layers are dynamically generated, the matrix

formation has to be dynamic as well. This is handled by the

slice controller which writes the results in appropriate format

in the storage.

The transformed weight matrix is partitioned into sub-

matrices and mapped onto the sub-arrays as show in Fig.9(c).

Every element (i, j) in input activation matrix gets multiplied
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Fig. 10. Self-attention layer in BERT

with all the elements of a row i in the weight matrix. For ex-

ample, the input I0,0 gets multiplied with W0,0,0,W1,0,0, ...Wn,0,0
to generate the partial products of elements O0,0,O1,0, ...On,0
respectively. Since we perform matrix multiplication in this

format, the full compute capability of the BCE unit, as

discussed in Section III-C1, is exploited.

1) Mapping Recurrent Neural Networks: Recurrent neural

networks process a sequence of inputs using the internal

state through a series of gating mechanisms and activation

functions. Unlike CNNs, RNNs process the inputs sequen-

tially, meaning to process the input at current step, output of

previous step is required. LSTMs and GRUs are the widely

used RNN variants which differ in the gating mechanism

used. Typically LSTM employ more number of gates than

GRUs which makes it computationally intensive. Therefore

we use the LSTM [29] network to evaluate BFree architecture.

The operations on LSTM network comprises of matrix mul-

tiplication, tanh, sigmoid, and softmax operations. The BFree

architecture performs all the operations sequentially within the

cache, crediting to the re-configurable LUT based operations.

2) Mapping Transformer Models: The primary operation

in transformer models is matrix-matrix multiplication which

is highly optimized on CPUs and GPUs. Unlike LSTMs,

transformer model has abundant parallelism as all the inputs of

a sequence can be processed in parallel. Bidirectional encoder

representation from transformers (BERT) [30] is an instance of

the transformer model which is used in the evaluation of BFree

architecture. Fig.10 shows the dataflow of the self-attention

layer, which is the basic building block of the BERT model.

BFree executes softmax operation similar to matrix multiply

using efficient systolic dataflow. Each sub-array processes

unique sets of elements in the vector, and accumulates across

the sub-array to get denominator of the softmax (∑ex) opera-

tion in the last sub-array. This denominator is redistributed

to all the sub-arrays (increased parallelism) for computing

the final output. Matrices K, Q, and V can be processed in

parallel. However, matrices K and Q are required for further

computation of P and P’ matrices whereas V is not required

until P’ is computed. So, we overlap the computation of V

with the computation of P’ which only involves scalar and

softmax units. This scheduling improves the utilization of the

compute resources in the system.

C. BFree Execution Flow
BFree incorporates hierarchical control mechanism across

cache, slice, bank and sub-array granularity for the execu-

tion of DNN workloads. BFree requires new instructions for

supporting these in-memory operations (convolution, matrix

multiplication, pooling, and activation functions), similar to

the state-of-the-art processing in cache works [9]. These in-

memory instructions are directed to the cache controller, and

it executes the kernel. Each instruction executes a kernel, thus

performing layer by layer execution of the NN workloads.

Overall BFree execution flow is illustrated in Fig.11. In the

configuration phase, depending on the kernel, BFree cache

controller loads the LUT rows at sub-arrays with appropriate

entries and also programs the slice controller with the nec-

essary control data for the kernel. Next, it loads the weight

parameters of the network into all the slices in a broadcast

fashion. Depending on the kernel parameters (dimensions of

filter, number of channels etc.), it distributes the weights across

and within each slice for efficient execution. It employs weight

duplication, and efficient partition across sub-arrays to increase

the parallelism. Slice controller, loads the configuration blocks

(CB) of each BCE with the appropriate metadata depending

on the kernel operation.
In the computation phase, cache controller loads the input

features/operands onto the input registers of the BCEs of the

first sub-bank using slice controller (these inputs will fed to

the adjacent sub-banks in a systolic manner in the subsequent

cycles). Next, BCE performs the corresponding operation

(multiplication, convolution) using the LUT entries in sub-

array or its hardwired multiply-ROM. It also accumulates the

partial products from the adjacent sub-arrays in a systolic

fashion. The final product will be accumulated in the last

sub-array in each sub-bank. Depending on the operation,

the accumulated products will be further distributed across

different sub-arrays in the same sub-bank depending on the

output channel. The final results will be either stored in the

sub-arrays for processing the next layer features or stored

back in the next level storage (such as DRAM) depending

on the storage requirements (for example, when we do batch

inference, the output features are stored back in the DRAM

due to cache storage space constraints).

V. ANALYSIS AND RESULTS

This section describes in detail, the design framework,

circuit and layout design feasibility to memory system level

quantitative evaluations. We also describe strategies and opti-

mizations used in running various types of neural networks,

and compare our results with relevant bitline computing tech-

niques. We perform comprehensive evaluation of the SRAM

circuit design, layout design and area overhead, BCE and

router design.

A. Design and Simulation Environment Setup
As part of the BFree work, we have designed the SRAM

bitcells and the subarray partition using circuit design with
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Fig. 11. Overview of BFree execution flow

standard SRAM design techniques. A comprehensive design

and analysis requires system level evaluations with various

toolsets. Table-1 shows the circuit simulation parameters and

tools used for design and evaluation. SRAM circuit, LUT

integration and layout design are implemented using TSMC

16nm circuit simulation and layout design rules. We have

synthesized and performed auto place and route for a slice

with BCEs using Synposys DC and ICC compiler respectively.

Next, we evaluated power of the BCE for different operations

using Synopsys Primetime-PX. We have incorporated these

performance and power metrics into BFree cycle accurate

simulator for end-to-end evaluation of various NN workloads

(steps shown in Section 3 & 4).

B. Design Analysis

BFree incorporates minimal changes to conventional L3

cache to support PIM LUT based compute, this subsection

analyzes the optimized modes, power, performance and area

overheads of the additional logics:

Reduced access cost for LUT: The reduced cost access

rows for the LUT look-up are used for all operations except

multiply. During the convolution or matrix multiply operation,

these reduced cost access rows are used for the intermediate

partial products. Sub-array requires two additional components

for enabling LUT feature into the subarray partition. These are

LUT precharge and LUT enable circuitry which will enable

the Bitline decoupling to the rows of subarray partition. Bitline

connectivity to only few rows and reuse of the already existing

subarray peripherals will result in faster data lookup. This

additional circuit constitutes to 0.5% area compared to the

sub-array.

Controller: The controller at various granularity (cache:

0.8mW, slice: 1.4mW) orchestrating the dataflow constitutes

to 0.1% area compared to the whole L3 cache.

BCE: BCE in convolution mode (conv mode) consumes

0.4mW, which utilizes 1x{8:1 MUX}, 1xAdder, 2xShifters.

Whereas in matrix multiplication mode (matmul mode) uti-

lizes the switch MUX (8x{8:1 MUX}), all the Adders and

Shifters, thereby consuming 1.3mW. For all other operations,

TABLE I
DESIGN TOOLS ANALYSIS SETUP FRAMEWORKS

SRAM, LUT partition, and
BCE design

16nm SPICE simulation model and
standard cell libraries

Cache level evaluation CACTI [31]
Synthesis Synopsys Design Compiler
Power and Timing analysis Synopsys Primetime-PX

BCE consumes 0.4mW. By integrating 16nm technology pa-

rameters into CACTI [31], we calculate area overhead for

larger cache slices. The BCE area overhead is 6% for a cache

slice of 2.5MB. Increased access latency due to BCE area

overhead is countered by repeated up sizing which aids in

balancing the delay overheads.

Comparison with Specialized MAC unit: Having a spe-

cialized MAC at the subarray level might be an alternative

for bitline computing. While this design is straightforward,

BCE when compared to specialized MAC unit with equivalent

configurable features, occupies 3% lesser area and offers 48%

more energy efficiency. The BCE design eliminates costly

multipliers, that accounts for the energy savings compared to

the MAC unit. Also, simple 8-bit MAC unit does not support

special operations like sigmoid, tanh, softmax, etc., whereas

BCE and LUT together supports them.

C. Experimental Setup

In the subsequent section, we first compare our BFree PIM

approach with a recent processing in cache technique - Neural

Cache [9]. For this purpose, we run inception-v3 [32]. Even

though we give emphasis towards PIM techniques for caches,

we also compare BFree with NN accelerator like Eyeriss

[33] using VGG-16 [34]. We further point out that DRAM

bandwidth is the performance bottleneck of BFree and present

the performance scaling for increasing DRAM bandwidth for

one of the networks. We also discuss the mapping of LSTM

and BERT, to demonstrate the re-configurability of the BFree

architecture.

We use Intel Xeon CPU E5-2697 running at 2.6 GHz for

CPU baseline performance. For GPU performance, we use

NVIDIA Titan-V GPU having 5120 cores, 8.5MB shared

cache and 12 GB HBM2. We evaluate BFree with 35MB L3

cache over different networks with varied parameters, shown

in Table-II. We profiled CPU and GPU using Pytorch and

Tensorflow profiler. To measure the power, we use Intel Rapl

[35] Nvidia-smi [36] tools for CPU and GPU respectively. The

maximum frequency for BFree is same as the subarray access

latency (1.5GHz).

TABLE II
SUMMARY OF NEURAL NETWORK WORKLOADS

Network Layers Params Mults Dataset
Inception-v3 48 24M 4.7G

ImageNet [37]
VGG-16 16 138M 15.5G
LSTM 1 4.3M 4.35M TIMIT [38]

BERT-base 12 87M 11.1G
MRPC [39]

BERT-large 24 324M 39.5G
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Fig. 12. (a)Layer-wise run-time comparison of mixed layers in Inception-v3.
Latency breakdown of (b)BFree, and (c)Neural Cache. (d)Energy breakdown
of different operations in the Cache for BFree excluding DRAM energy.

D. Evaluation

Comparison with Neural Cache: Compared to Neural

Cache [9], BFree on conv mode (0.5 MAC/cycle per sub-

array) shows a 1.72x overall speedup and 3.14x energy savings

for the same L3 cache size of 35MB. BFree requires minimal

perturbation to the sub-array, hence running at sub-array’s

frequency. Whereas, Neural Cache adds additional peripheral

logics in the sub-array to perform computations, thereby

decreasing the sub-array’s frequency. The speedup advantage

is also due to the systolic dataflow processing incorporated into

our design. On the other hand, Neural Cache loads all inputs

into the appropriate subarrays before the processing can begin.

Furthermore, the outputs available on different bitlines have to

be read out and written back multiple times for accumulation.

These overheads are hidden in BFree as the inputs and partial

sum flow across the systolic array which is pipelined.

Fig.12(a) shows the performance of BFree and Neural

Cache when running mixed layers of Inception-V3. Since input

loading is not a contributing factor to the runtime of BFree, it

performs significantly better for layers with larger input sizes.

Fig.12(b)&(c) shows the distribution of runtime for

Inception-V3 on BFree and Neural Cache respectively. Major-

ity of the runtime for both the architectures is spent in loading

filter elements from DRAM. The next major component is the

convolution phase which primarily comprises of MAC oper-

ations. During the convolution phase, both BFree and Neural

Cache have a similar performance. However, Neural Cache

spends almost 30% of the execution time in loading inputs

and reducing the partial products obtained during convolution

phase. But, BFree does not have these overheads due to

systolic data processing. For quantization, we use gemmlowp

[40] technique which requires multiplying a scaling factor and

adding a bias to the feature before shifting it to obtain the final

value. This is performed by all the subarrays hosting the data,

eliminating the round trip to the processor. Hence, we see a

1.72x speedup compared to Neural Cache.

The energy savings can be attributed to the reduced number

of subarray reads and writes, and low power design of BCE

units. Neural Cache has to activate all the bitlines every cycle

either for read, write or MAC operations. The energy cost

for the read/write access, and compute operation is 8.6pJ and

Fig. 13. Layerwise latency comparison against Eyeriss

15.4pJ respectively. In contrast, BCE accesses the subarray

only for reading and writing data, whereas the MAC opera-

tions are performed using the BCE hardwired-LUT(consumes

about 0.5pJ) resulting the significant energy gains over Neural

Cache.

For BFree, almost 80% of the energy is attributed to the

weight loading phase from DRAM. Fig.12(d) shows the energy

distribution after excluding the DRAM energy. From this

figure, we can observe that the sub-array access energy (SA

access) and BCE contribute to 85% of the energy. SA access

is incurred while reading and writing weight elements and

partial products. BCE energy is the total energy consumed by

BCE during the execution which includes the accumulation

operation across sub-arrays.

Comparison with Eyeriss: VGG16 network comprises of

huge weight filter sizes, thereby enabling matrix multiplication

based dataflow (discussed in section 4.2). Hence, BCE in

matmul mode (4 MACs/cycle per sub-array) can utilize all the

16 adders & shifters when performing matrix multiplication.

The filter matrix can be loaded onto the SRAM subarray in the

appropriate format. The input activation matrix is dynamically

generated by issuing multiple reads to the DRAM buffers.

We compare the performance of running VGG-16 against

Eyeriss [33] with iso-compute area and iso-frequency for a

slice (SRAM memory with 2.5MB). We get an area overhead

of 6% for the proposed configuration of BCE units in a

2.5MB slice. So, we configured Eyeriss to the same area as

the additional custom logic needed for BFree. The equivalent

configuration of Eyeriss accelerator consists of 12x12 array

with 8-bit MAC units (area of the PE of Eyeriss is scaled to

16nm technology). Fig.13 shows the layer wise computation

cycle breakdown and BFree is 3.97x faster than Eyeriss. BFree

requires reduced number of computation cycles compared to

Eyeriss. Execution of layers in BFree is dominated by weight

and input loading time rather than the execution (∼ 10%). The

overhead due to weight loading can be amortized by perform-

ing batch processing. However, the input load overhead cannot

be hidden by batch processing which becomes the bottleneck

of the system. It is due to the limited main-memory bandwidth

available in the system.

Increasing the main memory bandwidth: In Fig.14, we

show the trend in execution time when we increase the avail-
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Fig. 14. Latency breakdown for VGG16 network with varied main memory
bandwidth (DRAM: 20GBps, eDRAM: 64GBps, and HBM: 100GBps).

able bandwidth using eDRAMs [41] and HBM [42] memories

for batch sizes 1 and 16. For a single image processing (batch

is 1), we store the intermediates within the SRAM, but in the

case of batch processing, BFree uses the next level memory

to hold the intermediates, thereby suffering from input load

time. We could observe that the eDRAM still suffers from the

feature loading time, whereas with HBM the BFree is highly

efficient without much loading overheads. Also, the Fig.14

shows the performance benefits due to varying bit precisions

among the layers of VGG-16. BFree seamlessly supports

operations on different bitwidths, enabling it to exploit the

layerwise varied precision trained using [43]. Varied bit-

precision (accuracy loss of 1%) reduces the 50% of execution

time compared to the 8-bit precision, since most of the layers

are executed using 4-bit precision. While running a single

batch, inputs are loaded from the SRAM but input load time

increases with higher number batches, since it is stored in

next level memory. This trend is valid with varied inputs and

weight bit precision.

Comparison with CPU and GPU: BFree achieves 259x,

5.5x speedup and 307x, 11.8x energy savings w.r.t CPU and

GPU for a batch size of 16 when running Inception-V3. For

VGG-16, we get a speedup of 193x, 3x, and, energy savings

of 253x and 7x w.r.t CPU and GPU for a batch size of 16.

LSTM and BERT: The core computation in LSTM and

BERT are matrix-vector and matrix-matrix multiplications, so

BFree is operated in matmul mode Also, these networks make

use of special functions like tanh, sigmoid, softmax, etc, which

can be computed with the help of LUTs.

The whole LSTM model fits within the SRAM cache.

Therefore, the weight load overhead is amortized over the

sequence of inputs. BFree executes LSTM-1024 network using

all the slices.

Table-III shows the runtime of LSTM networks of baseline

and BFree architecture for a sequence length of 300. The

runtime presented for baseline architectures is only for the

computation involved in a timestep during steady state of

TABLE III
RUNTIME & ENERGY COMPARISON OF BFREE W.R.T CPU & GPU FOR

LSTM, BERT-BASE AND BERT-LARGE.

Net-
work

Ba-
tch

Execution Time in ms Energy in J

CPU GPU BFree CPU GPU BFree
LSTM 888.3 96.2 0.43 31.09 4.33 0.01
BERT
-base

1 1160.0 47.3 5.3 34.80 1.67 0.12
16 121.3 3.8 1.2 3.64 0.45 0.04

BERT
-large

1 2910.0 89.7 35.6 87.3 4.5 0.39
16 453.1 11.1 6.7 13.6 1.7 0.12

execution. The runtime excludes the data transfer time from

main memory as weights will be available in cache. Because

LSTM is a sequential model, the data movement overheads

in general purpose processors cannot be hidden as much from

the runtime.

Table-III also contains the performance of baselines and

BFree for BERT-base and BERT-large models. We observe

relatively lesser speed-ups for BFree compared to the baseline

models, since CPUs and GPUs use highly optimized BLAS

routines [44], [45] for matrix multiplication which achieves

good resource utilization. The speedup w.r.t GPU (5120 cores)

can be attributed to large number of compute units in BFree

(4 MACs/subarray, and a total of 4480 sub-arrays) and en-

ergy savings are due to reduced data movement overheads.

CPU, GPU and BFree all benefit from batching of inputs

by amortizing the data movement overheads. BERT-base has

smaller layers compared to BERT-large and therefore has more

replicas of the layer. In such scenarios, different inputs have

to be supplied to the replicas to perform useful work, which

is again limited by the available main memory bandwidth.

Hence the impact of main memory bandwidth on runtime is

significant for BERT-base than for BERT-large.

VI. RELATED WORKS

In this section, we discuss existing custom digital ac-

celerator and PIM-based accelerator architectures for DNN

acceleration. Several neural network accelerators have been

proposed to leverage the computational and energy efficiency

offered by dedicated hardware. Eyeriss [33] optimizes data

movements by maximizing input data reuse and minimizing

partial sum accumulation cost. DaDianNao [46] proposes a

compact neural network supercomputer. They map specialized

logic of the DNNs to multiple chips/nodes which are tightly

interconnected to optimize the data transfer. Simba [47] maps

the DNN inference operation onto multiple smaller chiplets

in a distributed fashion. WAX [48] incorporates the compute

units adjacent to each SRAM scratch pad sub-arrays to min-

imize the wire lengths between compute units and storage.

SCNN [49] and SparTen [50] propose sparse neural network

accelerators. They customize the dataflow to leverage the

weight and activation sparsity in the neural networks for faster

inference and improved energy efficiency.

PIM-based accelerators can be broadly categorized into two

categories depending on the underlying memory technology.

First category of PIM accelerators [3], [5], [51], [52], [53]
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leverage the in-situ analog and digital MAC capabilities of

emerging cross-point memory architectures to accelerate the

DNN workloads. These architectures augment the cross-point

memory arrays with necessary peripheral circuitry such as

analog-to-digital and digital-to-analog converters, shift & add

units. Second category of PIM accelerators [9], [54], [55],

[56] leverage the SRAM and DRAM based bitline computing

techniques. Aga et al. [57] proposed compute caches which

repurpose the cache for computational purposes. Boolean

operations are performed using multi row activation tech-

nique. Slower compute time as compared to the data access

time as a measure to retain the memory robustness. This

Bitline computing technique accelerates applications having

bulk Boolean operations. Works from Zhang et al. [19], [58]

have proposed multi row activation in SRAM for in memory

linear classification by performing multiplications using bitline

current summation technique.

Neural Cache [9] and Duality cache [54] run neural net-

works on repurposed caches of the processor using multi row

activation and bit serial computing. Since caches occupy ma-

jority of the processor real estate and bitline level computing

can transform the memory into thousands of PIM accelerators,

both Neural Cache and Duality Cache achieve performance

much higher than CPU and GPU running the same application.

However fundamental operations like MAC require multiple

access to the bitlines. All of the above works either design

a novel SRAM cell, use new technology or modify the

memory peripherals to achieve PIM at the bitline level. PIM

solutions are not just limited to SRAMs but works from V.

Seshadri et al., [55], [56] perform similar multi row activations

in DRAM. However, our work relies on LUTs within the

subarray hierarchy of the memory and compute neural network

primitives in lesser cycles. We show higher energy efficiency

than the related works which reply on the bitline discharge

for computation. To the best of our knowledge ours is the

first work to propose PIM using light weight LUTs within

the SRAM subarray and reduce the role of bitlines in the

computation. We show performance boost and higher energy

efficiency by computing neural network primitives in lesser

number of cycles.

VII. CONCLUSION

Technology downscaling challenges have negatively im-

pacted the memory design. Over the years, design strategy

for memories have been capacity centric and two thirds of

modern-day processor area are occupied by on chip caches.

Data movement in and out of the caches have become the

major bottleneck in executing neural network tasks. PIM

solutions have been able to alleviate this bottleneck for present

day applications. PIM using bitline discharge for computations

have been well researched and demonstrate performance and

energy efficiency. However accessing the bitlines repeatedly

along with modifying the SRAM cell and peripherals have

limited the maximum achievable gains. In this regard we

propose a bitline computing free PIM solution (BFree) by

configuring a small portion of the sub-array as LUTs. Segrega-

tion of the bitlines and the presence of small compute engine

(BCE) configures the sub-array to perform neural network

computation. In this work we have shown that BFree supports

various kinds of neural networks. This PIM solution achieves

1.72x better performance while being 3.14x energy efficient

compared to the state-of-the-art DNN in-memory accelerators

when running inception v3. Our analysis show 101x, 3x

speed up and 91x, 11x energy efficient than CPU and GPU

respectively for a transformer model, BERT-Base. BFree has

the potential to further unlock more efficient PIM capabilities

with better mapping techniques and task sharing in a tightly

coupled compute-memory system.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers of ISCA 2020 and

MICRO 2020 for their constructive and insightful comments.

REFERENCES

[1] Jay B Brockman, Peter M Kogge, Thomas L Sterling, Vincent W Freeh,
and Shannon K Kuntz. Microservers: A new memory semantics for
massively parallel computing. In Proceedings of the 13th international
conference on Supercomputing, pages 454–463, 1999.

[2] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper, J. LaCoss,
J. Granacki, J. Brockman, A. Srivastava, W. Athas, V. Freeh, Jaewook
Shin, and Joonseok Park. Mapping irregular applications to diva, a pim-
based data-intensive architecture. In SC ’99: Proceedings of the 1999
ACM/IEEE Conference on Supercomputing, pages 57–57, Nov 1999.

[3] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie.
Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory. In 2016 ACM/IEEE 43rd
Annual International Symposium on Computer Architecture (ISCA),
pages 27–39, June 2016.

[4] Tzu-Hsien Yang, Hsiang-Yun Cheng, Chia-Lin Yang, I-Ching Tseng,
Han-Wen Hu, Hung-Sheng Chang, and Hsiang-Pang Li. Sparse reram
engine: Joint exploration of activation and weight sparsity in compressed
neural networks. In Proceedings of the 46th International Symposium
on Computer Architecture, ISCA ’19, pages 236–249, New York, NY,
USA, 2019. ACM.

[5] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasub-
ramonian, John Paul Strachan, Miao Hu, R. Stanley Williams, and
Vivek Srikumar. Isaac: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars. In Proceedings of the 43rd
International Symposium on Computer Architecture, ISCA ’16, pages
14–26, Piscataway, NJ, USA, 2016. IEEE Press.

[6] A. Biswas and A. P. Chandrakasan. Conv-ram: An energy-efficient
sram with embedded convolution computation for low-power cnn-based
machine learning applications. In 2018 IEEE International Solid - State
Circuits Conference - (ISSCC), pages 488–490, Feb 2018.

[7] W. Khwa, J. Chen, J. Li, X. Si, E. Yang, X. Sun, R. Liu, P. Chen, Q. Li,
S. Yu, and M. Chang. A 65nm 4kb algorithm-dependent computing-
in-memory sram unit-macro with 2.3ns and 55.8tops/w fully parallel
product-sum operation for binary dnn edge processors. In 2018 IEEE
International Solid - State Circuits Conference - (ISSCC), pages 496–
498, Feb 2018.

[8] S. Kumar, V. A. Tikkiwal, and H. Gupta. Read snm free sram cell
design in deep submicron technology. In 2013 INTERNATIONAL
CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION
(ICSC), pages 375–380, Dec 2013.

[9] Charles Eckert, Xiaowei Wang, Jingcheng Wang, Arun Subramaniyan,
Ravi Iyer, Dennis Sylvester, David Blaauw, and Reetuparna Das. Neural
cache: Bit-serial in-cache acceleration of deep neural networks. In
Proceedings of the 45th Annual International Symposium on Computer
Architecture, ISCA ’18, pages 383–396, Piscataway, NJ, USA, 2018.
IEEE Press.

[10] J. Wang, X. Wang, C. Eckert, A. Subramaniyan, R. Das, D. Blaauw, and
D. Sylvester. A 28-nm compute sram with bit-serial logic/arithmetic
operations for programmable in-memory vector computing. IEEE
Journal of Solid-State Circuits, 55(1):76–86, Jan 2020.

99



[11] Supreet Jeloka, Naveen Bharathwaj Akesh, Dennis Sylvester, and David
Blaauw. A 28 nm configurable memory (tcam/bcam/sram) using push-
rule 6t bit cell enabling logic-in-memory. IEEE Journal of Solid-State
Circuits, 51(4):1009–1021, 2016.

[12] A. S. Noetzel. An interpolating memory unit for function evaluation:
analysis and design. IEEE Transactions on Computers, 38(3):377–384,
1989.

[13] H. Ling. An approach to implementing multiplication with small tables.
IEEE Transactions on Computers, 39(5):717–718, 1990.

[14] P. T. P. Tang. Table-lookup algorithms for elementary functions and their
error analysis. Argonne National Lab. Tech. Report MCS-P194-1190,
1991.

[15] S. S. Prasad and S. K. Sanyal. Design of arbitrary waveform generator
based on direct digital synthesis technique using code composer studio
platform. In 2007 International Symposium on Signals, Circuits and
Systems, volume 1, pages 1–4, 2007.

[16] P. K. Meher. New approach to look-up-table design and memory-based
realization of fir digital filter. IEEE Transactions on Circuits and Systems
I: Regular Papers, 57(3):592–603, 2010.

[17] P. K. Meher. Lut optimization for memory-based computation. IEEE
Transactions on Circuits and Systems II: Express Briefs, 57(4):285–289,
April 2010.

[18] Erwei Wang, James J. Davis, Peter Y. K. Cheung, and George A. Con-
stantinides. LUTNet: Rethinking inference in FPGA soft logic. In IEEE
International Symposium on Field-Programmable Custom Computing
Machines, 2019.

[19] J. Zhang, Z. Wang, and N. Verma. In-memory computation of a machine-
learning classifier in a standard 6t sram array. IEEE Journal of Solid-
State Circuits, 52(4):915–924, April 2017.

[20] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and
R. Das. Compute caches. In 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pages 481–492, Feb
2017.

[21] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: Impli-
cations of the obvious. SIGARCH Comput. Archit. News, 23(1):20–24,
March 1995.

[22] P. Hung, H. Fahmy, O. Mencer, and M. J. Flynn. Fast division
algorithm with a small lookup table. In Conference Record of the Thirty-
Third Asilomar Conference on Signals, Systems, and Computers (Cat.
No.CH37020), volume 2, pages 1465–1468 vol.2, 1999.

[23] H. Amin, K. M. Curtis, and B. R. Hayes-Gill. Piecewise linear
approximation applied to nonlinear function of a neural network. IEE
Proceedings - Circuits, Devices and Systems, 144(6):313–317, 1997.

[24] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A.
Horowitz, and William J. Dally. Eie: Efficient inference engine on com-
pressed deep neural network. In Proceedings of the 43rd International
Symposium on Computer Architecture, ISCA ’16, page 243–254. IEEE
Press, 2016.

[25] Y. Bengio and J. Senecal. Adaptive importance sampling to accelerate
training of a neural probabilistic language model. IEEE Transactions
on Neural Networks, 19(4):713–722, 2008.
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