
Newton: A DRAM-maker’s Accelerator-in-Memory
(AiM) Architecture for Machine Learning

Mingxuan He
Electrical and Computer Engineering

Purdue University
West Lafayette, IN, U.S.A.

he238@purdue.edu

Choungki Song
DRAM Design

SK Hynix
Icheon, South Korea

choungki.song@sk.com

Ilkon Kim
DRAM Design

SK Hynix
Icheon, South Korea

ilkon.kim@sk.com

Chunseok Jeong
DRAM Design

SK Hynix
Icheon, South Korea

chunseok.jeong@sk.com

Seho Kim
DRAM Design

SK Hynix
Icheon, South Korea
seho5.kim@sk.com

Il Park
DRAM Design

SK Hynix
Icheon, South Korea

il.park@sk.com

Mithuna Thottethodi
Electrical and Computer Engineering

Purdue University
West Lafayette, IN, U.S.A.

mithuna@purdue.edu

T. N. Vijaykumar
Electrical and Computer Engineering

Purdue University
West Lafayette, IN, U.S.A.

vijay@ecn.purdue.edu

Abstract—Advances in machine learning (ML) have ignited
hardware innovations for efficient execution of the ML models
many of which are memory-bound (e.g., long short-term mem-
ories, multi-level perceptrons, and recurrent neural networks).
Specifically, inference using these ML models with small batches,
as would be the case at the Cloud edge, has little reuse of
the large filters and is deeply memory-bound. Simultaneously,
processing-in or -near memory (PIM or PNM) is promising
unprecedented high-bandwidth connection between compute and
memory. Fortunately, the memory-bound ML models are a good
fit for PIM. We focus on digital PIM which provides higher
bandwidth than PNM and does not incur the reliability issues of
analog PIM. Previous PIM and PNM approaches advocate full
processor cores which do not conform to PIM’s severe area and
power constraints. We describe Newton, a major DRAM maker’s
upcoming accelerator-in-memory (AiM) product for machine
learning, which makes the following contributions: (1) To satisfy
PIM’s area constraints, Newton (a) places a minimal compute
of only multiply-accumulate units and buffers in the DRAM
which avoids the full-core area and power overheads of previous
work and thus makes PIM feasible for the first time, and (b)
employs a DRAM-like interface for the host to issue commands
to the PIM compute. The PIM compute is rate-matched to the
internal DRAM bandwidth and employs a non-intuitive, global
input vector buffer shared by the entire channel to capture input
reuse while amortizing buffer area cost. To the host, Newton’s
interface is indistinguishable from regular DRAM without any
offloading overheads and PIM/non-PIM mode switching, and
with the same deterministic latencies even for floating-point
commands. (2) To prevent the PIM-host interface from becoming
a bottleneck, we include three optimizations: commands which
gang multiple compute operations both within a bank and across
banks; complex, multi-step compute commands – both of which
save critical command bandwidth; and targeted reduction of tFAW
overhead. (3) To capture output vector reuse with reasonable
buffering, Newton employs an unusually-wide interleaved layout
for the matrix. Our simulations running state-of-the-art neural
networks show that building on a realistic HBM2E-like DRAM,
Newton achieves 10x and 54x average speedup over a non-PIM
system with infinite compute that perfectly uses the external
DRAM bandwidth and a realistic GPU, respectively.

Index Terms—processing-in-memory, fully-connected neural
networks, DRAM

I. INTRODUCTION

Machine learning (ML) is emerging as an important do-
main for processing vast amounts of data. While some ML
inference workloads (e.g., visual processing) are compute-
intensive (e.g., convolutional neural networks (CNNs)), many
others (e.g., language and speech processing) are memory-
bound (e.g., long sort-term memories (LSTMs), recurrent
neural networks (RNNs), multi-layer perceptrons (MLPs),
and the fully-connected classification layers in convolutional
neural networks (CNNs)). Simultaneously, processing near or
in memory (PNM or PIM) promises to provide unprecedented
high-bandwidth and low-energy connection between compute
and memory (PNM examples include 2.5-D integration via
interposers employed by Hybrid Memory Cube [34] and High
Bandwidth Memory [25]). As such, this application pull and
technology push match perfectly.

While PIM is an old idea [7], [19], [22], [30], [33], [44],
PNM is a more recent variant [3], [13], [15], [16], [24], [35].
Broadly, there are three variants depending upon where the
compute is placed relative to the memory: the compute is (1)
within each DRAM bank before the sense amplifiers (analog-
PIM) [8], [29], [38], [39], [43]; (2) outside each DRAM
bank just after the sense amplifiers (digital-PIM); and (3) after
the global bus (either PNM or a host such as a CPU, GPU,
or accelerator), as shown in Figure 1. While conventional
DRAM allows its banks to be accessed in parallel, data can be
retrieved from only one bank at a time due to the narrow, off-
chip connection between DRAM and compute (e.g., narrow
channel width). Analog-PIM and digital-PIM provide higher
bandwidth than conventional DRAM by enabling compute
to retrieve data from all the banks in parallel via wide, on-
die connections. However, analog-PIM incurs the well-known
issues of noise, scalability, and process variation which affects
speed in digital logic but value accuracy in analog logic
where values change with transistor parameters. To account

372

2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)

978-1-7281-7383-2/20/$31.00 ©2020 IEEE
DOI 10.1109/MICRO50266.2020.00040

Fig. 1. Processing in/near Memory variants

for process variation, each chip may have to be trained
separately to maintain accuracy. PNM has wider, in-package
DRAM-compute connection than conventional DRAM but
lower bandwidth than the PIM variants due to the lack of
fully-parallel data retrieval from all the banks. Therefore, we
focus on digital-PIM.

The bandwidth advantage of digital-PIM comes with signif-
icant constraints, involving hardware and applications. On the
hardware front, compute area and power are constrained to
avoid excessive DRAM density loss and thermal challenges
(e.g., no more than 25% area overhead). Thus, buffering,
wiring, and arithmetic logic for compute are limited. Though
PIM’s data bandwidth is high, the compute-memory command
bandwidth remains constrained. Further, compute logic imple-
mented using a DRAM process is slow though memory-bound
applications would not be affected by the slow compute. PNM
avoids these constraints by placing the compute logic in a
separate die but provides lower bandwidth as mentioned above.
Avoiding slow DRAM process via SRAM-based PIM [17] has
worse capacity and energy.

On the application front, PIM can improve only regular,
memory-bound and not compute-bound applications (i.e., ap-
plications with only a few operations per byte accessed of
some large data). Further, a fundamental problem is that two-
input-one-output operations with more than one large, low-
temporal-reuse operand pose the difficulty that PIM’s compute
can be near only one of the operands, requiring massive data
movement for the other operand(s) like non-PIM architectures
and thereby losing PIM’s bandwidth advantage. Thus, even
among memory-bound applications, only those that have only
one large, low-temporal-reuse operand can benefit from PIM
(i.e., the other two are small with high temporal reuse and
can be held in small buffers). Matrix-vector computation at
the heart of inference with ML applications, such as LSTMs,
RNNs, MLPs, and fully-connected classification layers in
CNNs, have (1) one large input (filter matrix of size 10-100s
MB), one small input (vector) and one small output (vector),
and (2) only one multiply-accumulate (MAC) operation per
matrix byte accessed. Thus, these regular and deeply memory-
bound applications are a good fit for PIM. A key point is
that any filter reuse means caching would reduce memory

bandwidth demand obviating PIM or PNM solutions (i.e.,
any reuse means many operations per byte accessed such
as the matrix-matrix multiplications in CNNs). Specifically,
batching of several inputs in LSTMs, RNNs, or MLPs induces
filter reuse which can be exploited by caching without PIM
or PNM (i.e., matrix-vector multiplication becomes matrix-
matrix multiplication with considerable matrix reuse). While
ML inference in the cloud may enjoy sizable batches, inference
at the edge (e.g., smartphones, hand-held devices, or even
edge servers) typically would have small or even a size-of-
one batches.

Previous PIM work does not identify this key application
constraint. The lack of appropriate applications has been a
problem for PIM until now. Further, previous PIM proposals
employ full superscalar, vector/SIMD core(s) [7], [19], [22],
[30], [33], [44]. However, PIM (analog or digital) is subject
to severe area and power constraints due to which only the
bare minimum compute hardware, such as some multiply-
accumulate units (MACs) and buffers, would be acceptable
(e.g., even such minimal hardware incurs around 20% area
penalty).

To address the above issues, we propose Newton, an
accelerator-in-memory (AiM) architecture for machine learn-
ing. Newton is the architecture of a major DRAM maker’s
upcoming AiM product which is a culmination of the decades
of work on PIM. We make the following contributions:
• Newton (a) places a minimal compute of only multiply-

accumulate units and buffers which, unlike the previous
PIM and PNM proposals, does not incur the full-core
area and power overheads and thus makes PIM feasible
for the first time, and (b) employs a DRAM command-
like interface for the host to issue commands to the
PIM compute. The PIM compute is rate-matched to the
DRAM’s internal bandwidth, and employs a non-intuitive
feature: a global input vector buffer shared by the entire
channel to capture full input reuse while amortizing the
DRAM row-wide input buffer area cost over the channel.
Newton’s interface avoids the overhead and granularity
issues of offloading-based accelerators, so that Newton
is indistinguishable from regular DRAM to the host –
no kernel launch delay (key for small batches), the same
deterministic latencies as regular DRAM commands even
for floating-point compute commands, and no PIM/non-
PIM mode switching for Newton or the host. However,
even with its significant bandwidth advantage, naive AiM
without the optimizations listed below performs only 48%
faster than a GPU.

• To prevent the PIM-host interface from becoming a
bottleneck, we include three optimizations: (1) a single
compute command to gang multiple compute operations,
both within a DRAM bank and across all banks, (2) com-
plex compute commands which is a departure from simple
DRAM read/write commands (e.g., a single compute
command triggers (a) a broadcast of the input vector from
the global buffer, (b) column-read of the filter matrix, and
(c) multiply-add) – both of which save critical command

373

bandwidth, and (3) targeted reduction of timing overhead
that reduces command bandwidth (e.g., tFAW).

• The input vector is multiplied by every matrix row to
produce the output vector (i.e., the input and output
vectors have high reuse but the matrix has no reuse).
To capture this reuse fully with only limited buffering,
Newton employs an unusually-wide interleaved layout
for the filter matrix (DRAM row-wide). This interleaving
reduces the output vector write traffic with minimal
output buffering.

Our simulations running state-of-the-art neural networks
show that building on a realistic HBM2E-like DRAM Newton
achieves 10x and 54x average speedup over a non-PIM system
with infinite compute that perfectly uses the external DRAM
bandwidth and a realistic GPU, respectively. While our evalua-
tion is based on HBM2E-like DRAM, Newton is applicable to
other DRAMs, including DDR, LPDDR, and GDDR families.

II. BACKGROUND

A. Conventional DRAM architecture

We provide a brief overview of a typical DRAM archi-
tecture. We describe only the high-level details needed to
understand our AiM architecture (i.e., this description is not
intended to cover all the details of the DRAM architecture).
We assume one channel and one rank for a modern DRAM
architecture which employs many internal DRAM banks (e.g.,
16). A DRAM row-miss read access starts by activating the
row in a specific bank and latching the data in the bit-
line sense-amplifiers (BLSAs) of the bank. The activation
is followed by a DRAM column access of n bits from the
row buffer (e..g, n = 256 bits or 32 bytes). These bits are
routed from the bank to the global bus and then onto the
off-chip memory bus. while the banks operate in parallel in
conventional DRAM, the data retrieval from different banks
are serialized through the global bus (only one set of n bits).
While HBM makes wider column accesses than conventional
DRAM (e.g., 256 bits versus 64 bits), the data retrieval from
the banks is still serial like conventional DRAM. In contrast,
PIM places the compute directly next to each bank which
exposes the full internal bandwidth across the banks. To avoid
any confusion between DRAM rows (columns) and matrix
rows (columns), we will qualify the terms rows and columns
with DRAM or matrix as appropriate.

Conventional systems making cache block accesses to mem-
ory employ cache block-interleaving so that consecutive cache
blocks are mapped to adjacent channels to enable paral-
lel accesses at cache block granularity. Channel parallelism
simply results in the bandwidth being multiplied, in any of
conventional, HBM, or PIM.

B. Workload

Modern LSTMs, RNNs, MLPs, and fully-connected clas-
sification layers in DNNs can be viewed as a matrix-vector
product as shown in Figure 2. Figure 2 illustrates the key com-
putation for one output element (highlighted in red). Because

Fig. 2. A Fully-connected Neural Network Layer

each output computation requires the pairwise multiplication
of the model weights and the inputs (and the summation of
such products), the model weights can be viewed as a matrix
where each matrix row contributes to the corresponding output
cell. While, Figure 2 shows a small example, at typical sizes,
one layer in a model may operate on an input of 4K elements
(a 4Kx1 column vector) to produce an output column vector
of 1K elements for which the matrix size is effectively 1K
(rows) x 4K (columns). A neural network activation function
(e.g., ReLU, sigmoid, and tanh), distinct from DRAM row
activation, is applied to the output vector elements. A full
model, where each layer’s output is the next layer’s input,
may employ many layers so that the total model size may be
large (e.g., 340M elements in Google’s BERT [10]). Because
matrix-vector multiplication has no data reuse of the matrix
elements (only one operation per element) and because the
large matrices cannot fit on-chip, these workloads are deeply
memory-bound. Fortunately, these regular workloads satisfy
the constraint of only one operand being large making them a
good fit for PIM. To avoid terminology that may fit some of
these ML models but not others, we will use the general term
matrix-vector multiplication as the main computation instead
of specific terms like filter-input multiplication.

III. NEWTON

Recall from Section I that, first, to keep area and power
overheads acceptable Newton employs (a) a minimal compute
of only multiply-accumulate units and buffers which avoids
full-core area and power overheads of previous work and thus
makes PIM feasible for the first time, and (b) a DRAM-like
command interface for the host CPU to issue commands to
the PIM compute. The PIM compute is rate-matched to the
internal DRAM bandwidth, and employs a global input vector
buffer shared by the entire channel to capture input reuse
while amortizing the buffer area over the channel. Newton’s
interface makes it indistinguishable from regular DRAM to the
host, avoiding offloading overheads and PIM/non-PIM mode
switching, and ensuring the same deterministic latencies as
regular DRAM commands even for floating-point compute
commands. Second, to prevent the PIM-host interface from
becoming a bottleneck, three key optimizations of the interface
are: (a) commands which gang multiple compute operations
both within a bank and across all banks, and (b) com-
plex, multi-step compute commands to save critical command

374

Fig. 3. AiM Tiling for DRAM with 16 banks and 1 KB DRAM row size

bandwidth; (c) deterministic operation even for floating–point
compute commands to avoid handshake overhead; and (d)
targeted reduction of command overhead. Finally, to exploit
output vector reuse with minimal output buffering, Newton
employs a DRAM row-wide interleaved layout of the filter
matrix, We start with a single channel for simplicity and extend
to multiple channels later.

A. Interleaved layout for the filter matrix

While the matrix is resident in the DRAM, the input vector
is broadcast to the banks. Each element of the output vector
is computed by multiplying a matrix row and the input vector.
The input vector is multiplied by every matrix row (i.e., the
input vector has high reuse but the matrix has no reuse). To
capture this reuse in full, Newton employs a simple interleaved
layout for the matrix. Because each matrix row is accessed one
DRAM column access at a time, the idea is to hold a chunk
of the input vector elements and completely reuse the input
elements with all the matrix rows before moving on to the
next set of input elements so that the same input elements are
never re-fetched. Accordingly, the matrix rows are laid out
in a chunk-interleaved manner, where the first matrix row’s
first chunk is followed by the second matrix row’s first chunk,
and so on. Upon filling the DRAM row of one bank, this
interleaving continues to the next bank for maximizing reuse
(e.g., each 1-KB DRAM row has a chunk of one of the matrix
rows). Figure 3 assumes 16 banks and DRAM rows with
16x512 bits = 8 Kb = 1 KB so that 1 KB each of the first
16 matrix rows are mapped to the 16 banks. We discuss the
schedule of the computation later in Section III-C. If there
are more matrix rows than the banks then the interleaving
continues in later DRAM rows in the banks. The first chunk
of all the matrix rows is followed by the second chunk of
all the matrix rows, and so on. One would expect the chunk
width to equal the column-access width to capture column-
access parallelism while keeping the input buffering as small
as possible (e.g., 16 16-bit elements, which is 256 bits).
However, each chunk is actually as wide as a DRAM row
to reduce the output buffering as explained in Section III-C;
input buffering reduction is also explained in Section III-C. We
assume 16-bit floating-point data because our customers and
partners stipulate that recommendation systems, unlike CNNs,

Fig. 4. Newton Datapath

need high accuracy (e.g., 0.1% accuracy difference matters for
revenue).

Finally, AiM memory can be used as normal memory and
can hold non-AiM data. However, for ease of timing explained
later in Section III-C, AiM and non-AiM data can be in the
same bank but not in the same DRAM row.

B. Newton organization

Newton employs k multipliers per bank to match each
bank’s column-access bandwidth (e.g., k = 16), as shown
in Figure 4. The multipliers are implemented using DRAM-
technology transistors. Because of area constraints, Newton
does not employs as many multipliers as needed to cover
an entire DRAM row whose data is accessed anyway only
a DRAM column access at a time as a trade-off in DRAM
design between access bandwidth and area (not specific to
AiM). Newton’s strategy captures all the internal DRAM band-
width as the multipliers are rate-matched to the column-access
bandwidth (i.e., all the column access data multiplications are
complete under the column access latency).

The matrix row and the input vector chunks are multiplied
(e.g., 16 elements at a time in any given bank) and reduced
through a pipelined adder tree (Figure 4). The host retrieves
the latched result of the tree. It may seem that this reduction
tree may incur extra area compared to an approach where the
matrix is laid out in column-major format so that the different
matrix rows in each column access would be multiplied by the
input vector (e.g., each DRAM row would hold matrix rows
in an element-interleaved manner where the first element of
the 16 matrix rows would be followed by the matrix rows’
second element, and so on). Then, there would simply be 16

375

multiply-accumulates (requiring 16 multipliers and 16 adders)
to consume each DRAM column access data However, both
the tree and column-format approaches require 16 multipliers
and 16 adders (a 16-to-1 adder tree needs 15 adders plus one
adder for the accumulation as shown in Figure 4). In fact,
the column major approach requires 16 accumulator latches
(as opposed to only one accumulator latch with the adder tree
approach).

In addition to the modest area advantage due to fewer
latches, the adder-tree approach has one additional advantage.
If the matrix rows are fewer than the multipliers, which in
the future may be in the thousands, then the column-format
approach may result in idle multipliers and loss of throughput.

Avoiding this idling requires the matrix rows to be parti-
tioned into sub-vectors and distributed among multiple banks.
This partitioning needs a reduction across the banks for the
final result. In the former approach, underutilization occurs
only in the case that the number of matrix rows is smaller than
the total number of banks (across all memory channels). As
such, because the number of matrix rows (512+) are typically
more than the total number of banks (256-384, in aggressive
16-24 channel memory systems), the latter approach’s unfavor-
able case is more likely than the former’s. Hence, the former
approach (the adder tree) is better.

At a high level, a typical matrix-vector multiplication in-
volves (1) parallel (but staggered) DRAM row activations in
all the banks (for maximum parallelism), (2) broadcast of the
input vector chunk, (3) access of the matrix row chunk, (4)
multiply the chunks and reduce. Recall from Section III-A that
the layout enables one input vector chunk to be reused fully
before moving to the next chunk. Like the input vector, the
output vector also has reuse: the element-by-element product
of a matrix row and input vector updates the same output
vector element. However, capturing the output reuse requires
accessing all the chunks in the input vector to multiply with
the full matrix row. In such a scenario, additionally achieving
full input reuse would require buffering the entire input vector
which may not be feasible (the full input vector may be longer
than a DRAM row). As such, limited buffering implies fully
capturing either full input or full output reuse but not both
(largely symmetric), or some partial input and partial output
reuse.

Newton employs DRAM-row wide chunks, as mentioned
in Section III-A. To capture full input reuse, a DRAM-row
wide buffer holds the input vector chunk. To reduce the area,
the buffer is global and shared by all the banks in a channel.
The 16 parallel multiply operations per bank require the corre-
sponding input vector elements, called sub-chunks, to be read
from the global buffer and broadcast to all the banks directly
into the multiplier inputs without any further per-bank latching
to save area. The relatively-slow DRAM-process transistors
accommodate these global buffer reads and broadcasts. The
adder tree result per bank, a single output vector element, held
in the result latch accumulates the entire input vector chunk’s
result over several rounds of multiplications and additions.
Thus, only a single-element latch is required for an entire

Fig. 5. Abstract Floor Plan

input chunk’s result. This small output buffering is the reason
for the DRAM row-wide interleaving. At the same time, by
globally sharing the input vector buffer across all the banks in
a channel, the input buffer cost is reduced.

Figure 5 illustrates an abstract floorplan of Newton im-
plemented on HBM2E. Within HBM2E’s channel and bank
organization, the per-bank compute logic (highlighted in dark-
green) is shown for one bank. The per-channel global buffer
is placed in the peripheral area.

C. Newton operation

Newton’s operation may be viewed as imposing a tiling on
the iteration space of the matrix-vector product computation
as shown in the example in Figure 3. The example assumes
a 16-bank DRAM with a 1-KB row (i.e., 1 KB = 8 Kb =
512 x 16 bits = 512 bfloat16 elements per DRAM row).
Each 16×512 tile represents the computation granularity that
corresponds to one row of 512 elements for each of the 16
banks. The 512 elements in one chunk are consumed one sub-
chunk (16 bfloat16 words) at a time in the innermost loop
to produce and write out one partial output vector element
(see Algorithm 1). In the next outer loop, the computation
proceeds with the tiles moving down the rows in column-
major fashion (while holding the input vector chunk for full
input reuse) which produces the partial output vector elements
read out at the end of each DRAM-row. Finally the outermost
loop moves across the matrix columns, outputting more partial
output vector elements each of which is reduced by the host
to the appropriate output vector element.

The host reads the result latches from all the banks in
parallel and concatenated together into a sub-chunk (e.g., 16-
bit results from 16 banks concatenated to form 256 bits in the
output vector). The DRAM-row wide chunks (Section III-A)
lower the output write traffic with minimal output buffering by
ensuring that the host reads results only once per full DRAM
row. The wider the chunk the lower the traffic but the more
the input buffering whose cost is amortized over the entire
channel by employing a global buffer. If the matrix row is
wider than the chunk, then the host reduces multiple chunks’
partial results all of which contribute to the same output vector
element. Finally, the host processor applies the neural network

376

Algorithm 1 Newton’s Tiled MV computation
1: function MVPRODUCT(InputVectorV,Matrix M,m,n)
2: numChunks = n/512 . Number of chunks
3: C[1..numChunks]← split(V) . Split vector to chunks
4: for i ∈ 1..numChunks do . Outermost loop.
5: GlobalBu f f er←C[i]
6: r = m/16 . Number of vertical tile positions
7: for j ∈ 1..r do

. Compute 1 DRAM row x Global Buffer per bank
8: for all b ∈ 1..numBanks do
9: Results[b]←ComputeTile(Tile j,Row b)

10: end for
11: TileResult← ReadResultsFromAllBanks()
12: . Tile result sent for accumulation at host
13: end for
14: end for
15: end function

activation functions (distinct from DRAM row activation) to
the final reduced outputs (Section II-B).

Unlike neural network activation function which can be
applied as and when elements of the vector are computed, the
scaling factor for batch normalization depends on the range
of values in the full vector (i.e., maximum, minimum). Even
so, most of the batch-normalization latency is hidden under
Newton computation by (1) determining the range of values
of the vector on the host as they are produced, and (2) exposing
the normalization latency of only the first tile after the vector
is produced before launching the next layer’s MV computation
on Newton with that normalized tile while other tiles are
normalized under Newton’s compute latency.

An alternative schedule to decrease the output traffic is to
discard the interleaving and instead lay out a full matrix row
in one DRAM bank occupying contiguous DRAM rows if
necessary. The next matrix row goes to the next bank and so
on, wrapping around to the first bank. With this layout, each
input vector chunk is broadcast to the banks as before with two
differences: (1) On the positive side, the result is accumulated
for the entire matrix row, not just one chunk (DRAM row) as
in the interleaving scheme, reducing output traffic. (2) On the
negative side, each input vector chunk is used by all the banks
but has to be re-fetched for the next set of matrix rows across
all the banks unlike the interleaving scheme where each chunk
is reused fully for all the matrix rows. This corresponds to a
row-major traversal of the tiled computation (instead of the
column-major traversal that captures reuse). We evaluate this
alternative, called Newton-no-reuse. The input traffic rise in
Newton-no-reuse far exceeds the output traffic fall – the entire
input vector chunk (an entire DRAM row) has to be refetched
per matrix DRAM row versus one sub-chunk of output read
out per matrix DRAM row, causing significant performance
drop as we show in Section V-B. Finally, in this variant, the
neural network activation functions are implemented as look-
up tables. Newton employs a single look up table per channel.
To apply the neural activation to the results in different banks,

TABLE I
Additional commands to support Newton

Command Operation
COMP# Ganged multiply of sub-chunk# in all banks
READRES Read the Result latches of all banks
GWRITE# WRITE sub-chunk# to the Global Buffer
G ACT# Ganged activation of 4-bank cluster#

the table is conceptually multi-ported. The neural activation is
applied to the final result before being read by the host.

We also explored an option in between the extremes of full
input reuse and no input reuse. The new option reuses the input
vector among four matrix rows in each of all the banks by
providing four result latches per bank. Compared to the full-
reuse variant, this option avoids the per-DRAM row output
traffic while incurring input fetch once every four matrix
rows. However, the output traffic is so low that even in the
benchmarks with fewer than four matrix rows per bank (i.e.,
small matrices) where the full-reuse variant has no advantage
over this option, the former performs virtually similarly to the
latter while avoiding the latter’s extra result latches. Therefore,
we do not pursue this option further.

D. Newton’s commands

DRAM commands must be separated by a specified delay
(e.g., 4 cycles). The global buffer for the input vector chunk
(1 DRAM row-wide) is loaded one column-access width at a
time (GWRITE in Figure 7). Though the loading takes many
commands, the performance impact is low due to amortization
over all the matrix rows. Newton’s commands are summarized
in Table I. If the row activation commands were for individual
banks, the commands would be staggered in time one after
another. Further, the row activations would be constrained
by the usual four-activation timing window (tFAW) for power
reasons. These constraints imply that the row activations would
be stretched over a long period which is exposed at each bank.
Newton addresses this problem by ganging four activations
using one command within tFAW constraints (G ACT in Fig-
ure 7). Due to area constraints, DRAM rows are not double-
buffered causing the last row activation latency to be exposed
(the other activations are overlapped).

We also consider reducing the tFAW overhead. Like most
modern integrated systems, DRAMs use many internal volt-
ages that are generated from external voltage supplies (e.g.,
VDD, VPPE) as shown in Figure 6. For example, the main
internal voltages are VCORE (the DRAM cell core voltage)
and VPP (DRAM cell wordline). Many concurrent ACT
command operations cause severe internal voltage drop due
to the increased current flow, requiring long delays to recover
the internal voltage levels to the desired target voltage. New-
ton’s ganging of activating four banks in a single command
exacerbates the voltage drop.

Such internal voltage recovery times are closely related to
several DRAM timing parameters such as tFAW (our focus),
tAA, tWR, tRP, and tRCD. To reduce tFAW , the internal LDO
(Low Dropout) regulator and the DC-DC pump driver strength
must be increased to enable higher currents and faster voltage

377

Fig. 6. DRAM internal voltages and its impact on tFAW

recovery. Therefore, improving tFAW comes with the cost of
higher die area. Newton’s tFAW delays are based on the circuit-
level estimates of the required internal voltage generator drive
ability to achieve aggressive performance goals with accept-
able area costs. These aggressive optimizations in Newton
are justified in spite of their die area costs because Newton
is expected to be sold at a higher price point because of
the acceleration it offers. Such optimizations would not be
considered in normal DRAMs.

Next, each compute command involves (i) reading a sub-
chunk from the global input buffer, (ii) making a column
access for the corresponding filter sub-chunk, and (iii) per-
forming the multiplication. While typical DRAM commands
are simple and involve only one operation (a read or a write),
employing a simple command for each of the three steps would
cause significant pressure on the command bandwidth. Instead,
Newton employs a single, complex command with a parameter
for the sub-chunk to capture all three steps (COMP in Table I).
Nevertheless, consuming a DRAM row would require many
compute commands (e.g., assuming 256-bit column access, a
1-KB DRAM row requires 32 commands). Even though the
banks can operate in parallel, if each bank were to require a
separate set of compute commands, the command bandwidth
would be saturated. Instead, we observe that all the banks
operate on the same input sub-chunk. Consequently, a single
command gangs the compute operations in all the banks (e.g.,
COMP in Figure 7. Finally, the result from all the banks can be
retrieved in a parallel manner and simply concatenated using
just one command (READRES in Figure 7).

Though implemented with DRAM-process transistors
(which are slower than logic-process transistors), the multi-
plications and each stage of the adder tree pipeline complete
before the next compute command’s column access to rate-
match the DRAM’s internal bandwidth. Thus, in the time a
conventional DRAM reads a row from one bank, AiM com-
pletes the arithmetic operations of a row in all the banks. This
timing, achieved by many circuit-level innovations, gives the
same deterministic behavior and the same latencies as regular
DRAM commands, which is a key advantage of Newton’s
interface.

Our description so far assumes one channel for simplicity.
With multiple (pseudo) channels, Newton’s per-channel op-
eration and timing are simply repeated in parallel across the
(pseudo) channels. There are a few remaining timing-related
issues: (1) AiM and non-AiM (conventional) data cannot

Fig. 7. Newton computation timing (One DRAM row across all banks)

reside in the same DRAM row. While non-AiM commmands
can interleave with AiM commands to the same bank, the
former are guaranteed to access a different row than the AiM
commands. Consequently, a pre-charge is needed on the bank
before the non-AiM row can be accessed, in which time the
AiM operations are guaranteed to complete ensuring that non-
AiM commands cannot interfere with AiM operations within
the same bank.

(2) The adder tree takes more than 4 cycles to complete
though there is pipelining so that another set of additions can
start 4 cycles after the previous set. Due to the completion
latency, the host memory controller has to insert an appropriate
delay before issuing an adder-tree result read (for neural
network activation or for read out to host).

(3) The number of the matrix rows may not be a multiple
of the number of banks leaving some banks free when the last
row in the other banks are still performing AiM operations.
The free banks cannot perform non-AiM operations until all
the banks are done with AiM operations.

(4) The current Newton design can process only one ML
model at a time in a bank or even a channel. Different models
can operate simultaneously in different channels.

E. Other concerns

Though we focus on an HBM-based implementation, New-
ton’s key ideas are applicable to other DRAM families such
as LPDDR, DDR, and GDDR, with low-level differences
based on the internal bandwidth, impact on density, and
implementation (e.g., number of MACs for rate matching).
Further, there may be other commercial considerations that
determine whether AiM is offered in these families.

378

Newton does not interfere with virtual memory. Address
translation can proceed similarly to conventional DRAM. The
Newton commands are based on physical addresses as are
conventional DRAM commands. While addresses within a
virtual memory page are guaranteed to be contiguous, physical
pages are often not contiguous even when the virtual pages
are. However, our matrix layout expects physical address
contiguity. To that end, we use super pages to allocate the
matrix guaranteeing physical address contiguity.

An issue with DRAM refresh is that Newton operations
often take longer to complete for an entire DRAM row than
conventional DRAM reads and writes. Because the result latch
accumulates the result for the entire DRAM row, a refresh
request in the middle of an Newton operation on a row would
change the row and disrupt the operation. A simple fix is
to delay the Newton operation if a refresh request would
mature within the operation’s latency. The memory controller
simply waits for the pending refresh to mature, sends the
refresh command, and then sends the Newton command. This
strategy is identical to how pending refresh requests within
conventional DRAM read or write latency are handled.

Finally, DRAMs rely on error correction codes (ECC) for
transient errors. However, the ECC is computed and checked
by the memory controller and not the DRAM itself whereas
AiM computation occurs within the DRAM. Fortunately, only
the matrix resides in the DRAM for long periods of time
with the possibility of collecting transient errors. The input
and output vectors are fetched and read out, respectively,
at least once per input, which is frequent enough to lower
their susceptibility. To address the matrix’s susceptibility. we
envision re-loading the matrix, and thereby discarding any
errors, from a non-AiM copy every so often for a small
bandwidth overhead (e.g., once per 1000 inputs).

F. A simple performance model

In an ideal non-PIM system, we start by conservatively
assuming that (1) the off-die processing is limited only by the
memory bandwidth and the arithmetic is hidden completely
under the memory transfers; and (2) the input and output
vectors are small enough to be held in the compute chip
without any memory access (hence our interleaving is not
relevant to the ideal non-PIM). We focus on one DRAM row
(a matrix row chunk) read which requires the DRAM row
to be activated. Upon activation, column accesses, separated
by tRRD, sequentially retrieve the row’s data. Assume that
the DRAM row (chunk) size is row and the column access
width (sub-chunk) is col io. The number of columns (col)
is then given by row/col io. In the ideal non-PIM, the long
latency of retrieving the entire DRAM row completely hides
the activation latency of a DRAM row in the next bank as
well as any tFAW -related delays (hence our tFAW optimization
is not relevant to the ideal non-PIM). Thus, ideal non-PIM’s
effective time for one DRAM row,

tideal−non−PIM = col ∗ tCCD

TABLE II
Benchmarks

Workload Matrix Vector
GNMT LSTMs1 [45] 4096×1024 1024×1
GNMT LSTMs2 [45] 4096×2048 2048×1

BERTs1 [10] 1024×1024 1024×1
BERTs2 [10] 1024×4096 4096×1
BERTs3 [10] 4096×1024 1024×1

AlexNetL6 [26] 21632×2048 2048×1
AlexNetL7 [26] 2048×2048 2048×1
DLRMs1 [31] 512×256 256×1

In Newton, a DRAM row in each group of four banks is
activated which require separate commands separated by the
inter-command delay. The tFAW constraint applies across the
banks in groups of four, so that activating a row in each
group of four banks contributes max(tRRD, tFAW)*(n/4− 1),
assuming n banks. (The last bankgroup’s tFAW is not relevant
as no further activations are needed.) Within this constraint,
the activations occur in parallel across the (groups of) banks.
After the last bank group’s activation with a delay of tACT
is complete, all the banks make column accesses in parallel
to retrieve and operate on their data. The processing is rate
matched to the retrieval rate. Because the input vector chunk
is fetched only once per all the matrix rows (Section III-A),
we ignore input reads for model simplicity (our simulations
in Section V faithfully capture the input fetch). The output
vector chunk concatenated across all the banks is read out in
one column access per DRAM row in all the banks. Again,
we ignore the output in our model (but not in our simulations)
for simplicity. Thus, Newton’s time for processing one DRAM
row in all the banks,

tNewton =

max(tRRD, tFAW)∗ (n/4−1)+ tACT + col ∗ tCCD

Newton’s speedup is n∗ tideal−non−PIM/tNewton. Let

o = (max(tRRD, tFAW)∗ (n/4−1)+ tACT)/(col ∗ tCCD)

which is the ratio of the activation overheads to the data
retrieval time in Newton. Then, Newton’s speedup is

n/(o+1)

We investigated overlapping some of the overhead and
found that the lack of slack in the command bandwidth and
the area overhead of an extra row buffer are impediments to
achieving overlap.

IV. METHODOLOGY

Benchmarks: Our benchmarks include six matrix-vector
(MV) product computations (which is the memory-bound
computation Newton targets) chosen from popular machine
learning domains such as natural language processing (GNMT,
BERT), and recommendation systems (DLRM, see Table II).
For each of the workloads, we identified the (possibly more
than one set of) MV dimensions in the workloads (e.g.,
see multiple rows for BERT-large in Table II). For these
workloads, the fully-connected (FC) layers account for more
than 99% of the run time. For completeness, we also include

379

TABLE III
DRAM Configuration (HBM2E-like)

Num of Ranks 1
Num of Banks 16

Num of Rows in each bank 32768
Num of Column I/Os per row 32

Column I/O bit width 256b (16 bfloat16)
Num of Multipliers per bank 16

Timing Parameters (in nanoseconds)
tAA = 22–29 ns; tRP = 14 ns; tRCD = 14 ns; tRAS = 33 ns

the two FC layers of AlexNet, a CNN. The layers account
for a smaller fraction of the inference time (e.g., 15%)
but a vast majority of the model parameters, and therefore
power and bandwidth. Note that CNNs’ convolutional layers
are compute-bound and hence unsuited for any PIM (not just
Newton). However, if a platform running CNNs happens to
have Newton, then their FC layers can run on Newton.
Newton Simulator: Our Newton simulator is based on the
cycle-level DRAMsim2 [36] simulator. Though our simple
performance model (Section III-F) abstracted away some
details (such as loading the global buffer and reading the
results), our simulator models all those details. In addition to
the basic DRAM parameters (e.g., banks, row/column widths)
that is similar to HBM2E [27], our modified Newton simulator
includes the following key changes.

• Global buffer: The buffer that holds a row-wide chunk of
the input vector and allows for direct connectivity to the
multiplier inputs (with 16-way fanout for 16 banks).

• Result buffer: One scalar bfloat16 register that holds
an output per bank.

• Command Support: We add support for Newton com-
mands as shown in Table I.

Modeling non-PIM architectures in simulation: To com-
pare Newton against the best possible non-PIM architectures
we consider an ideal non-PIM host with unlimited compute
bandwidth – Ideal Non-PIM.

To model an upper-bound on performance of any non-PIM
architecture including PNM proposals (e.g., [3], [13], [15],
[16], [24], [35]) and traditional systems (GPU, TPU, and mul-
ticores), Ideal Non-PIM assumes infinite compute bandwidth
and is limited only by the DRAM’s external bandwidth. Thus
its execution time is modeled as the time to transfer DRAM
data to the host. Against this ideal system, any speedups
achieved by Newton can only be higher against realistic
non-PIM architectures including CPUs, GPUs, TPUs, or any
imaginable custom non-PIM (PNM or traditional) accelerator.
Previous PIM proposals use full cores which impose high area
overheads and hence are not compared.

We use a common DRAM configuration similar to HBM-
2E for both Ideal Non-PIM and Newton, as shown in Table III
(only a subset of timing parameters and in some cases, ranges
instead of actual values are shown to protect proprietary
information). Our configuration uses an 8-high stack with 8
channels, 2 pseudo channels, and 16 banks per channel for a
total capacity of 128 Gb. Each bank is organized as a memory
cell array with 32K rows and 8K columns. Each row of 8K bits

(or 1K bytes) can be accessed at a 256-bit (32-byte) column
I/O granularity to which Newton’s 16 multipliers per bank are
rate-matched.
GPU simulation: We use GPGPUsim [6] (version 4.0),
a widely-used cycle-level simulator for GPUs, to model a
realistic, high-performance non-PIM host (as opposed to the
unrealistic Ideal Non-PIM discussed above). We configure
GPGPUsim as a Titan-V, a high-end model with 80 CUDA
cores and 24 memory channels. We modify GPGPUsim’s
DRAM and its configuration to operate with the same timing
parameters as Newton. On the software front, we use Cutlass-
1.3 [23], a high-performance, open-source CUDA library for
linear algebra.

In the simulation, we noticed that Cutlass’s run time has a
high constant overhead that hurts the GPU’s performance for
our (relatively-light) kernels. To address this problem, we ran
several iterations of matrix-vector computation and isolated the
incremental cost of each matrix-vector multiplication. Thus,
we eliminate the constant overheads from the matrix-vector
computation. (Note that this elimination is conservative in that
it minimizes the GPU execution time; including any part of the
overheads makes the GPU worse.)
Average Power Modeling: Newton’s power consumption
differs from that of Ideal Non-PIM in three key ways. First,
Newton incurs compute power in the multipliers and adders
that Ideal Non-PIM does not. Our internal models show that
Newton when performing the all-bank parallel computation
(i.e., when executing the COMP command) consumes about
4x as much power as Ideal Non-PIM when reading DRAM
at peak bandwidth (e.g., consecutive column accesses of the
same DRAM row). Of course, Ideal Non-PIM would incur
compute power which we ignore for our evaluations – an
advantage for Ideal Non-PIM. Second, Ideal Non-PIM incurs
power to transfer the entire matrix over the external interface
(DRAM PHY), which Newton completely avoids. Instead,
Newton incur transfer power only for (1) the partial results
sent to the host for final accumulation, and (2) the input vector
as it is loaded in chunks to the global buffer However, the cost
of Newton’s transfers are dwarfed by that of Ideal Non-PIM’s
matrix transfers. Finally, Newton incurs additional power to
hold banks open for longer (to ensure that all banks are open
before compute begins). In contrast, Ideal Non-PIM can open
a page and immediately transfer the contents without waiting.
We model all these components to compute the average power
using DRAMSim2. We do not show power parameters which
are proprietary.

V. RESULTS

Our simulations show: (1) Newton achieves 54x speedup
over a Titan V-like GPU; (2) Newton is 10x faster than any
non-PIM architecture; (3) all of Newton’s key optimizations
contribute to its speedups; (4) Newton’s speedups increase
with number of banks as do the compute and internal DRAM
bandwidths), although not linearly due to the Amdahl’s Law
effect of the activation overheads (o in Section III-F), (5)
as expected, Newton’s performance advantage diminishes at

380

Fig. 8. Speedup

larger batch sizes as non-PNM architectures can exploit data
reuse, and (6) Newton achieves higher energy efficiency than
Ideal Non-PIM.

A. Performance

Figure 8 shows the speedup of Newton over a Titan V-
like GPU with our 24-channel, (16-banks/channel) HBM-2E-
like DRAM configuration for (1) individual layers of our
benchmarks (X-axis left) and (2) end-to-end runs of our full
benchmarks – i.e., GNMT, BERT, AlexNet, and DLRM (X-
axis right). The end-to-end runs include activation functions
and batch normalization as mentioned in Section III-C. For
each benchmark, we also show Non-opt-Newton which does
not include any of Newton’s optimizations: ganged, complex
commands, interleaved layout and tiling, and improved tFAW
(Section III-D). Figure 8 also includes Ideal Non-PIM as
an upper bound on performance achievable by any non-PIM
architecture (including PNM proposals). Newton achieves 54x
speedup over the GPU when averaged across all individual
layers (geometric mean on the left). In contrast, even the unre-
alistic Ideal Non-PIM’s speedup is limited to 5.4x on average,
which motivates Newton. While Ideal Non-PIM is bound by
the external bandwidth, Newton’s compute is rate-matched to
the internal bandwidth. In the time required for one external
DRAM row transfer, Newton can consume one DRAM row
in all the banks. Finally, Non-opt-Newton’s modest speedup
– 48% over the GPU (lower than even Ideal Non-PIM) –
highlights the value of Newton’s key optimizations (which we
isolate next).

Newton achieves 10x speedup over Ideal Non-PIM, whereas
16 banks/channel offer a speedup opportunity of 16x. How-
ever, not all DRAM operations are possible in parallel due
to staggered DRAM row activations and tFAW constraints
(Section III-F). Plugging in Newton’s parameters into our
performance model in Section III-F, the predicted speedup
is 9.8x which closely matches (within 2%) the measured
speedup of 10x. The prediction is lower than the measurement
because the performance model ignores refresh effects, but
our simulations do not. Due to its slower runs, Ideal Non-
PIM tends to see more interruptions due to refresh than
Newton, which slightly improves Newton’s speedup. This

Fig. 9. Isolating Newton’s optimizations

effect is especially pronounced in DLRMs1 – Facebook’s Deep
Learning Recommendation Model [31].

Not surprisingly, GNMT, BERT, and DLRM – the NLP and
recommendation DNNs – retain high speedups in the end-
to-end evaluation (in the right section of Figure 8). While
Newton gets a boost in its speedup (70x) by finishing the
single layers of DLRM within the refresh window, the end-to-
end run of DLRM on Newton does see intervening refresh
resulting in a lower (but still significant) speedup of 47x.
AlexNet, a CNN and not a target for Newton due to being
compute-bound, has modest end-to-end speedup of only 1.2x.
Recall from Section IV that the acceleration of CNNs’ FC
layers is a free benefit in systems with Newton memory; and
is not a key target. While the overall mean speedup including
AlexNet, as shown in Figure 8, is 20x, the mean speedup for
the key target applications (BERT, GNMT and DLRM) is 49x.

B. Isolating individual optimizations

Newton leverages many optimizations in hardware and
software (listed below). To understand the impact of each
of these optimizations in isolation, Figure 9 shows Newton’s
speedup (over a Titan V-like GPU) as we progressively add the
optimizations one at a time leading up to the full Newton de-
sign. Starting with a non-optimized version (Non-opt-Newton),
we progressively add (1) all-bank ganged compute commands
(gang), (2) complex multi-step compute commands (complex),
(3) reuse via tiling and interleaved layout for the filter matrix
(reuse), (4) four-bank ganged activations (four bank), and
(5) aggressive tFAW (which results in full Newton). Without
any optimizations, Non-opt-Newton performance is severely
stifled despite having the same number compute and internal
bandwidths as Newton; the speedup is merely 48% over the
GPU. Each of Newton’s optimizations significantly improves
performance. The ganged computation strategy (which yields
the largest improvement) reduces command bandwidth re-
quirements by 16x which causes a significant improvement
in performance. The use of complex commands offers an
additional 3x reduction in command bandwidth. Each of the
remaining optimizations offer further improvements leading to
the full Newton design’s 54x speedup on average.

C. Sensitivity to Number of Banks

Figure 10 shows the speedup of Newton over a Titan V-
like GPU (Y-axis) for our benchmarks (groups of bars on

381

Fig. 10. Sensitivity to number of banks

the X-axis) as we vary the number of banks (individual
bars in each group). While the compute bandwidth increases
linearly with number of banks, the Amdahl’s Law effect of the
activation overheads (o in Section III-F) dampens the speedup.
Newton’s speedup goes from 28x (at 8 banks/channel) to 54x
(at 16 banks) and finally to 96x (at 32 banks). Note, 16
banks is a typical number for DRAM design; changing the
number of banks impacts area and power. Finally, if more
parallelism is needed, adding channels remains an option. With
additional channels, Newton benefits from the best of both
worlds – increased compute parallelism without exacerbating
the Amdahl’s Law bottleneck. Note that additional channels
improves the baseline DRAM bandwidth as well; to exploit
such higher bandwidth, however, non-PIM designs may need
additional compute resources as well.

D. Sensitivity to Batch Size

Newton’s sensitivity to batch size is important to understand
because k-way batching effectively changes the matrix-vector
([M ×N]× [N × 1]) product to a matrix-matrix ([M × N]×
[N × k]) product with significant reuse. Large batches’ high
reuse results in the workload being compute-bound (and thus
unsuitable for any PIM architecture, not just Newton). How-
ever, supporting small-batch inference is important (say 8-way
batches), as also argued in [20], especially for acceleration at
the edge (Section I).

Figure 11 and Figure 12 compare the performance of
Newton with Ideal Non-PIM (Y-axis) and Titan V-like GPU,
respectively. In each graph the performance shown on the
Y-axis is normalized to that of the Titan V-like GPU with
batch size of 1, for our benchmarks (groups of bars on
the X-axis). For each benchmark, we vary the batch size
(individual bars). Matrix elements see k-way reuse with k-way
batching, which non-PIM architectures can exploit to achieve
higher performance (e.g., via caching). Newton’s performance
remains unchanged with batch size because Newton’s compute
cannot exploit the reuse to improve performance. In contrast,
Ideal Non-PIM’s performance (Figure 11 improves with the
batch size, so that Ideal Non-PIM nearly catches up with
Newton at k = 8. At k = 16, Ideal Non-PIM is 1.6x faster
than Newton. However, this crossover point is an artifact of
the idealized nature (i.e., infinite compute) of Ideal Non-PIM.
The realistic GPU comparison in Figure 12 shows that a large
batch size of 64 is needed for the GPU to outperform Newton.

Fig. 11. Sensitivity to batch size (Ideal Non-PIM)

Fig. 12. Sensitivity to batch size (GPU-comparison)

Newton remains significantly faster at smaller batch sizes of
8 and lower.

This graph also implies that CNNs are unsuitable for PIM in
general. CNNs have enormous filter reuse due to convolutional
sliding even at low batch sizes. As such, Newton does not
target CNNs.

E. Power Comparison

Given that Newton achieves 10x speedup over any non-PIM
architecture, it is to be expected that Newton incurs higher av-
erage power consumption than conventional DRAM. However,
any non-PIM architecture (like CPUs or GPUs) would incur
additional compute power. Consequently, Newton’s power is
likely to remain lower in aggregate. Further, by avoiding the
external transfers of the matrix data, Newton achieves higher
energy efficiency. Figure 13 shows Newton’s average power
normalized to that of conventional DRAM (Y-axis) for each
of our benchmarks (X-axis). Newton, which achieves 10x
speedup over any non-PIM system, consumes only 2.8x more
power on average (rightmost bar) than conventional DRAM
(entirely ignoring non-PIM’s compute power and external
transfer power), which illustrates Newton’s energy efficiency.

VI. RELATED WORK

Application characteristics:: Previous PIM and PNM
proposals explore general workloads [7], [15], [19], [35],
vector workloads [9], [30], [33], MapReduce workloads [15],
[32], graph workloads [3], neural networks [8], [39], [43],
key-value search [18], and data reorganization [4]. These
workloads do not satisfy one or more of PIM’s key constraints
– regularity, memory-boundedness and only one large operand.

382

Fig. 13. Average Power

Architecture:: As discussed in Section I, analog-PIM
architectures [8], [29], [38], [39], [43] incur the reliability
and process variation issues associated with analog com-
putation. Previous digital-PIM and PNM proposals employ
uniprocessors [7], vectors [33], VLIW [30], GPGPUs [9],
multicores [11], [19], and many-cores [2], [3], [13], [15],
[16], [24], [35]. These architectures incur the area overhead
of these full processors with a subset of the overheads for
instruction processing and datapath control, complex super-
scalar pipelines, multi-level cache hierarchies, cache coher-
ence, address translation, and interconnection network. In
contrast, Newton implements a simple SIMD datapath and
avoids datapath control overheads by exposing a DRAM-like
interface for the host CPU to control the datapath.

Circuit-level optimizations for PIM-based ML accelera-
tors explore binary/ternary reconfigurability [5], options for
MAC unit placement in McDRAM [41], and variable bit-
precision [28], [40], These optimizations may improve the
circuit-level implementation of Newton. The AiM work at
Hynix started in 2016 and proceeded concurrently with the
McDRAM work, as shown by a few presentations on Hynix’s
AiM architecture which predate the codename Newton [42].
(Industry product projects typically do not provide much
public documentation.) Being an industry product effort, the
Newton project took longer for publication than the academic
McDRAM project. While McDRAM’s focus is evaluating
various circuit-level placement options for the MACs in a PIM-
based ML accelerator, this paper’s focus is on architecture-
level issues such as the command interface optimizations and
input reuse.

Other proposals [1], [12], [14] explore processing in cache
which does not address the memory bandwidth bottleneck seen
by cache misses. In contrast, PIM, in general, and AiM, in
particular, exploit higher internal memory bandwidth. Other
work [21], [37] explores sparse matrix computation for large,
sparse matrices, whereas AiM targets dense matrix-vector
multiplication.

VII. CONCLUSION

While PIM promises unprecedented high-bandwidth con-
nection between compute and memory, PIM imposes severe
area and power constraints. Further, PIM fits only regular,
memory-bound workloads with only one large, low-reuse
operand held in memory arrays while the other operands are

small and held in buffers. Fortunately, many memory-bound
ML models that perform matrix-vector computations fit this
constraint. Previous approaches advocate full cores which do
not conform to PIM’s area and power constraints.

We described the architecture and workload of Newton,
a major DRAM maker’s upcoming accelerator-in-memory
(AiM) product for machine learning. We addressed the above
issues through these contributions: (1) To satisfy PIM’s area
constraints, Newton (a) places a minimal compute of only
multiply-accumulate units and buffers in the DRAM which
avoids the full-core area and power overheads of previous
work and thus makes PIM feasible for the first time, and
(b) employs a DRAM-like interface for the host to issue
commands to the PIM compute. The PIM compute is rate-
matched to the internal DRAM bandwidth and employs a non-
intuitive, global input vector buffer shared by the entire chan-
nel to capture input reuse while amortizing buffer area cost. To
the host, Newton’s interface is indistinguishable from regular
DRAM without any offloading overheads and PIM/non-PIM
mode switching, and with the same deterministic latencies
even for floating-point commands. (2) To prevent the PIM-
host interface from becoming a bottleneck, we include three
optimizations: commands which gang multiple compute opera-
tions both within a bank and across banks; complex, multi-step
compute commands – both of which save critical command
bandwidth; and targeted reduction of command overhead. (3)
To capture output vector reuse with reasonable buffering,
Newton employs an unusually-wide interleaved layout for the
matrix.

Our simulations running state-of-the-art neural networks
show that building on a realistic HBM2E-like DRAM Newton
achieves 10x and 54x average speedup over a non-PIM system
with infinite compute that perfectly uses the external DRAM
bandwidth and a realistic GPU, respectively. Our results show
that each of Newton’s optimizations significantly contribute
to performance improvement over a GPU, collectively taking
the speedup from 48% to 54x. Further, Newton is more
energy-efficient than non-PIM systems. While our evaluation
is based on HBM2E-like DRAM, Newton is applicable to
other DRAMs, including DDR, LPDDR, and GDDR families.
These results make a compelling case for AiM architectures
for emerging machine learning workloads that are memory-
bound.

ACKNOWLEDGMENT

The Purdue authors on this research project were supported
in part by funding from SK Hynix Inc.

REFERENCES

[1] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and
R. Das, “Compute caches,” in 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA), 2017, pp. 481–492.

[2] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “Pim-enabled instructions:
A low-overhead, locality-aware processing-in-memory architecture,” in
Computer Architecture (ISCA), 2015 ACM/IEEE 42nd Annual Interna-
tional Symposium on, June 2015, pp. 336–348.

383

[3] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” in Proceedings of
the 42Nd Annual International Symposium on Computer Architecture,
ser. ISCA ’15. New York, NY, USA: ACM, 2015, pp. 105–117.
[Online]. Available: http://doi.acm.org/10.1145/2749469.2750386

[4] B. Akin, F. Franchetti, and J. C. Hoe, “Data reorganization in
memory using 3d-stacked dram,” in Proceedings of the 42Nd Annual
International Symposium on Computer Architecture, ser. ISCA ’15.
New York, NY, USA: ACM, 2015, pp. 131–143. [Online]. Available:
http://doi.acm.org/10.1145/2749469.2750397

[5] K. Ando, K. Ueyoshi, K. Orimo, H. Yonekawa, S. Sato, H. Nakahara,
M. Ikebe, T. Asai, S. Takamaeda-Yamazaki, T. Kuroda, and M. Mo-
tomura, “Brein memory: A 13-layer 4.2 k neuron/0.8 m synapse bi-
nary/ternary reconfigurable in-memory deep neural network accelerator
in 65 nm cmos,” in 2017 Symposium on VLSI Circuits, 2017, pp. C24–
C25.

[6] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing cuda workloads using a detailed gpu simulator,” in 2009
IEEE International Symposium on Performance Analysis of Systems and
Software, April 2009, pp. 163–174.

[7] J. B. Brockman, S. Thoziyoor, S. K. Kuntz, and P. M. Kogge, “A
low cost, multithreaded processing-in-memory system,” in Proceedings
of the 3rd Workshop on Memory Performance Issues: In Conjunction
with the 31st International Symposium on Computer Architecture, ser.
WMPI ’04. New York, NY, USA: ACM, 2004, pp. 16–22. [Online].
Available: http://doi.acm.org/10.1145/1054943.1054946

[8] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory,” in Proceedings of the
43rd International Symposium on Computer Architecture, ser. ISCA
’16. Piscataway, NJ, USA: IEEE Press, 2016, pp. 27–39. [Online].
Available: https://doi.org/10.1109/ISCA.2016.13

[9] B. Y. Cho, W. S. Jeong, D. Oh, and W. W. Ro, “XSD: Accelerating
MapReduce by Harnessing GPU inside SSD,” in 1st Workshop on
Near Data Processing (WoNDP 2013) In Conjunction with the 46th
International Symposium on Microarchitecture, 2013.

[10] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[11] R. G. Dreslinski, D. Fick, B. Giridhar, G. Kim, S. Seo, M. Fojtik,
S. Satpathy, Y. Lee, D. Kim, N. Liu, M. Wieckowski, G. Chen,
D. Sylvester, D. Blaauw, and T. Mudge, “Centip3de: A 64-core, 3d
stacked near-threshold system,” IEEE Micro, vol. 33, no. 2, pp. 8–16,
March 2013.

[12] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester,
D. Blaauw, and R. Das, “Neural cache: Bit-serial in-cache acceleration
of deep neural networks,” in Proceedings of the 45th Annual
International Symposium on Computer Architecture, ser. ISCA
’18. IEEE Press, 2018, p. 383–396. [Online]. Available: https:
//doi.org/10.1109/ISCA.2018.00040

[13] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim, “Nda:
Near-dram acceleration architecture leveraging commodity dram devices
and standard memory modules,” in High Performance Computer Archi-
tecture (HPCA), 2015 IEEE 21st International Symposium on, Feb 2015,
pp. 283–295.

[14] D. Fujiki, S. Mahlke, and R. Das, “Duality cache for data parallel
acceleration,” in Proceedings of the 46th International Symposium
on Computer Architecture, ser. ISCA ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 397–410. [Online].
Available: https://doi.org/10.1145/3307650.3322257

[15] M. Gao, G. Ayers, and C. Kozyrakis, “Practical near-data processing
for in-memory analytics frameworks,” in 2015 International Conference
on Parallel Architecture and Compilation (PACT). IEEE, 2015, pp.
113–124.

[16] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris:
Scalable and efficient neural network acceleration with 3d memory,”
in Proceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 751–764. [Online]. Available:
https://doi.org/10.1145/3037697.3037702

[17] M. Gokhale, B. Holmes, and K. Iobst, “Processing in memory: The
terasys massively parallel pim array,” Computer, vol. 28, no. 4, pp. 23–
31, Apr. 1995. [Online]. Available: http://dx.doi.org/10.1109/2.375174

[18] Q. Guo, X. Guo, R. Patel, E. Ipek, and E. G. Friedman, “Ac-dimm:
Associative computing with stt-mram,” in Proceedings of the 40th
Annual International Symposium on Computer Architecture, ser. ISCA
’13. New York, NY, USA: ACM, 2013, pp. 189–200. [Online].
Available: http://doi.acm.org/10.1145/2485922.2485939

[19] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper,
J. LaCoss, J. Granacki, J. Brockman, A. Srivastava, W. Athas,
V. Freeh, J. Shin, and J. Park, “Mapping irregular applications
to diva, a pim-based data-intensive architecture,” in Proceedings
of the 1999 ACM/IEEE Conference on Supercomputing, ser. SC
’99. New York, NY, USA: ACM, 1999. [Online]. Available:
http://doi.acm.org/10.1145/331532.331589

[20] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V.
Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho,
D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,
A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of
the 44th Annual International Symposium on Computer Architecture,
ser. ISCA ’17. New York, NY, USA: ACM, 2017, pp. 1–12. [Online].
Available: http://doi.acm.org/10.1145/3079856.3080246

[21] K. Kanellopoulos, N. Vijaykumar, C. Giannoula, R. Azizi, S. Koppula,
N. M. Ghiasi, T. Shahroodi, J. G. Luna, and O. Mutlu, “Smash:
Co-designing software compression and hardware-accelerated indexing
for efficient sparse matrix operations,” in Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO ’52. New York, NY, USA: Association for Computing
Machinery, 2019, p. 600–614. [Online]. Available: https://doi.org/10.
1145/3352460.3358286

[22] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik, and
J. Torrellas, “Flexram: toward an advanced intelligent memory system,”
in Computer Design, 1999. (ICCD ’99) International Conference on,
1999, pp. 192–201.

[23] A. Kerr, D. Merrill, J. Demouth, and J. Tran, “Cutlass: Fast linear algebra
in cuda c++.” https://devblogs.nvidia.com/cutlass-linear-algebra-cuda/.

[24] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay,
“Neurocube: A programmable digital neuromorphic architecture with
high-density 3d memory,” in Proceedings of the 43rd International
Symposium on Computer Architecture, ser. ISCA ’16. IEEE Press, 2016,
p. 380–392. [Online]. Available: https://doi.org/10.1109/ISCA.2016.41

[25] J. Kim and K. Tran, “Hbm: Memory solution for bandwidth-hungry pro-
cessors.” Presented at ’Hot Chips: A Symposium on High Performance
Chips’, 2014.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012,
pp. 1097–1105. [Online]. Available: http://papers.nips.cc/paper/4824-
imagenet-classification-with-deep-convolutional-neural-networks.pdf

[27] D. U. Lee, K. W. Kim, K. W. Kim, H. Kim, J. Y. Kim, Y. J. Park,
J. H. Kim, D. S. Kim, H. B. Park, J. W. Shin, J. H. Cho, K. H. Kwon,
M. J. Kim, J. Lee, K. W. Park, B. Chung, and S. Hong, “25.2 a 1.2v
8gb 8-channel 128gb/s high-bandwidth memory (hbm) stacked dram
with effective microbump i/o test methods using 29nm process and tsv,”
in 2014 IEEE International Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), 2014, pp. 432–433.

[28] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H. Yoo, “Unpu: A
50.6tops/w unified deep neural network accelerator with 1b-to-16b fully-
variable weight bit-precision,” in 2018 IEEE International Solid - State
Circuits Conference - (ISSCC), 2018, pp. 218–220.

[29] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and
Y. Xie, “Drisa: A dram-based reconfigurable in-situ accelerator,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO-50 ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 288–301. [Online].
Available: https://doi.org/10.1145/3123939.3123977

384

[30] R. Nair, S. F. Antao, C. Bertolli, P. Bose, J. R. Brunheroto, T. Chen,
C. Y. Cher, C. H. A. Costa, J. Doi, C. Evangelinos, B. M. Fleischer,
T. W. Fox, D. S. Gallo, L. Grinberg, J. A. Gunnels, A. C. Jacob,
P. Jacob, H. M. Jacobson, T. Karkhanis, C. Kim, J. H. Moreno, J. K.
O’Brien, M. Ohmacht, Y. Park, D. A. Prener, B. S. Rosenburg, K. D.
Ryu, O. Sallenave, M. J. Serrano, P. D. M. Siegl, K. Sugavanam, and
Z. Sura, “Active memory cube: A processing-in-memory architecture for
exascale systems,” IBM Journal of Research and Development, vol. 59,
no. 2/3, pp. 17:1–17:14, March 2015.

[31] M. Naumov, D. Mudigere, H. M. Shi, J. Huang, N. Sundaraman,
J. Park, X. Wang, U. Gupta, C. Wu, A. G. Azzolini, D. Dzhulgakov,
A. Mallevich, I. Cherniavskii, Y. Lu, R. Krishnamoorthi, A. Yu,
V. Kondratenko, S. Pereira, X. Chen, W. Chen, V. Rao, B. Jia,
L. Xiong, and M. Smelyanskiy, “Deep learning recommendation
model for personalization and recommendation systems,” CoRR, vol.
abs/1906.00091, 2019. [Online]. Available: https://arxiv.org/abs/1906.
00091

[32] Nitin, M. Thottethodi, and T. N. Vijaykumar, “Millipede: Die-stacked
memory optimizations for big data machine learning analytics,” in 2018
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2018, pp. 160–171.

[33] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “A case for intelligent ram,”
IEEE Micro, vol. 17, no. 2, pp. 34–44, Mar. 1997. [Online]. Available:
http://dx.doi.org/10.1109/40.592312

[34] J. T. Pawlowski, “Hybrid memory cube (hmc),” in 2011 IEEE Hot Chips
23 Symposium (HCS), Aug 2011, pp. 1–24.

[35] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan,
A. Buyuktosunoglu, A. Davis, and F. Li, “NDC: analyzing the
impact of 3d-stacked memory+logic devices on mapreduce workloads,”
in 2014 IEEE International Symposium on Performance Analysis
of Systems and Software, ISPASS 2014, Monterey, CA, USA,
March 23-25, 2014, 2014, pp. 190–200. [Online]. Available: http:
//dx.doi.org/10.1109/ISPASS.2014.6844483

[36] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle ac-
curate memory system simulator,” IEEE Computer Architecture Letters,
vol. 10, no. 1, pp. 16–19, 2011.

[37] F. Sadi, J. Sweeney, T. M. Low, J. C. Hoe, L. Pileggi, and
F. Franchetti, “Efficient spmv operation for large and highly
sparse matrices using scalable multi-way merge parallelization,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO ’52. New York, NY, USA:
Association for Computing Machinery, 2019, p. 347–358. [Online].
Available: https://doi.org/10.1145/3352460.3358330

[38] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim,
M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit:
In-memory accelerator for bulk bitwise operations using commodity
dram technology,” in Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-50 ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
273–287. [Online]. Available: https://doi.org/10.1145/3123939.3124544

[39] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P.
Strachan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac:
A convolutional neural network accelerator with in-situ analog
arithmetic in crossbars,” in Proceedings of the 43rd International
Symposium on Computer Architecture, ser. ISCA ’16. Piscataway,
NJ, USA: IEEE Press, 2016, pp. 14–26. [Online]. Available:
https://doi.org/10.1109/ISCA.2016.12

[40] D. Shin, J. Lee, J. Lee, and H. Yoo, “14.2 dnpu: An 8.1tops/w recon-
figurable cnn-rnn processor for general-purpose deep neural networks,”
in 2017 IEEE International Solid-State Circuits Conference (ISSCC),
2017, pp. 240–241.

[41] H. Shin, D. Kim, E. Park, S. Park, Y. Park, and S. Yoo, “Mcdram:
Low latency and energy-efficient matrix computations in dram,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 37, no. 11, pp. 2613–2622, 2018.

[42] “Supporting documentation of early AiM work,” https://engineering.
purdue.edu/∼mithuna/NewtonSupportingDocs/, SK Hynix Inc.

[43] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-
based accelerator for deep learning,” in 2017 IEEE International Sympo-
sium on High Performance Computer Architecture (HPCA), Feb 2017,
pp. 541–552.

[44] H. S. Stone, “A logic-in-memory computer,” Computers, IEEE Trans-
actions on, vol. C-19, no. 1, pp. 73–78, Jan 1970.

[45] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah,
M. Johnson, X. Liu, Łukasz Kaiser, S. Gouws, Y. Kato, T. Kudo,
H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young,
J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes,
and J. Dean, “Google’s neural machine translation system: Bridging the
gap between human and machine translation,” 2016.

385

