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Abstract—The availability of user-friendly programming
frameworks is key to the success of Non-Volatile Memory (NVM).
Unfortunately, most current NVM frameworks rely heavily on
user intervention to mark persistent objects and even persistent
writes. This not only complicates NVM programming, but also
introduces potential bugs. To address these issues, researchers
have proposed Persistence by Reachability frameworks, which
require minimal user intervention. However, these frameworks
are slow because their runtimes have to perform checks at
program load/store operations, and move data structures between
DRAM and NVM during program execution.

In this paper, we introduce P-INSPECT, a novel hardware
architecture targeted to speeding up persistence by reachability
NVM programming frameworks. P-INSPECT uses bloom-filter
hardware to perform various checks in a transparent and
efficient manner. It also provides hardware for low-overhead
persistent writes. Our simulation-based evaluation running a
state-of-the-art persistence by reachability framework shows that
P-INSPECT retains programmability and eliminates most of the
overhead. We use real-world applications to demonstrate that, on
average, P-INSPECT reduces an application’s number of executed
instructions by 26% and the execution time by 16%—delivering
similar performance to an ideal runtime that has no persistence
by reachability overhead.

Index Terms—Non-volatile memory, Programming frame-
works, Hardware for programmability

I. INTRODUCTION

Byte-addressable Non-Volatile Memory (NVM) technolo-

gies such as 3D XPoint [1], Phase Change Memory (PCM)

[2, 3, 4], and Resistive RAM (ReRAM) [5] have recently

gained much attention. They offer high storage density, low

static power, non-volatility, and performance characteristics

that are comparable to those of DRAM [6]. Thanks to these

properties, NVM is expected to create disruptive changes to

many application domains and software systems.

To a large extent, the success of NVM depends on the avail-

ability of user-friendly programming frameworks for software

development [7]. For this reason, many NVM programming

frameworks have been proposed (e.g., [8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]). Although they have

different implementations, they share the same challenges,

including what persistence abstractions to provide, how to

identify the objects to allocate in NVM versus DRAM, and

how to identify the stores that modify the persistent state.

Most of the frameworks rely heavily on programmer in-

volvement. They require programmers to mark all the objects
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that must be allocated in NVM (e.g., [10, 15, 16, 9, 18, 11, 13,

14]). Many frameworks also require programmers to identify

the stores that modify NVM (e.g., [10, 11, 12, 13, 14, 15,

17, 20]), and potentially augment the code with instructions

that write back a cache line to NVM (CLWB) [26], order

instructions (store fence or sfence), and log state in NVM. This

results in programming difficulty, introduces software bugs,

and generates nonreusable code.

Ideally, NVM frameworks should assume all of these afore-

mentioned responsibilities. One class of NVM frameworks that

come close to this ideal is Persistence by Reachability frame-

works (e.g., [21, 22, 23]). The idea is that the programmer

only identifies the durable roots—i.e., the few entry points

into the program’s data structures that should reside in NVM.

There is no need to mark all the persistent objects. Then,

during execution, the runtime software ensures that all the data

structures that are reachable from the durable roots are crash-

consistent. The runtime does so by moving the data structures

to NVM when needed, identifying persistent stores and adding

CLWB and sfence instructions, and performing logging when

required.

Unfortunately, while these frameworks are user-friendly,

their runtime adds substantial performance overhead [21, 27].

Since the properties of program structures change dynamically,

the framework has to perform checks at every program load

and store, and move data structures between DRAM and NVM

at runtime. To make persistence by reachability frameworks

attractive to the community, and the paradigm of choice among

programmers, they must have lower overhead.

The operation of such frameworks dictates that they pos-

sess fine-grain dynamic information about the program’s data

structures, such as memory location and persistence properties.

Currently, there is no efficient hardware technique to provide

such information. Approaches like Intel’s MPX [28] can

only provide limited information (i.e., pointer bounds) about

program structures, while approaches that rely on tagging

memory locations [29, 30, 31] incur too much overhead to

be used in production code.

In this paper, we introduce novel hardware support targeted

to accelerate NVM programming frameworks that provide

persistence by reachability. Our scheme, named P-INSPECT,

focuses on reducing the main source of overhead in these

NVM frameworks: state checks performed before read and

write accesses. Specifically, in P-INSPECT, an application

read/write includes inexpensive hardware checks of the state of
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the accessed data structure. In the common case, the hardware

checks conclude that no special action is needed, and the

read/write completes normally. Otherwise, a runtime software

handler is automatically invoked, which performs any needed

framework operations. To perform these checks efficiently, P-

INSPECT uses cache-coherent hardware bloom filters.

In addition, P-INSPECT also speeds up the execution of

persistent writes. It does so by combining writes with CLWB

and sfence instructions in hardware.

Our evaluation shows that P-INSPECT retains the pro-

grammability advantages of persistence by reachability frame-

works while removing most of their execution overhead.

Specifically, we run a key-value store with various Yahoo

Cloud Service Benchmarks, and several kernels on a state-

of-the-art persistence by reachability framework. With P-

INSPECT hardware support, real-world applications reduce

their number of executed instructions and their execution time

by an average of 26% and 16%, respectively. We also compare

P-INSPECT to an ideal runtime that has no persistence by

reachability overhead, and demonstrate similar performance

improvement.

This work makes the following contributions:

• We propose P-INSPECT, the first hardware architecture to

accelerate persistence by reachability NVM frameworks in

a transparent manner.

• We develop hardware designs to minimize persistence

checks in software and to speed up persistent writes.

• We evaluate the proposed hardware on a state-of-the-art per-

sistence by reachability NVM framework, and demonstrate

its improved performance.

II. BACKGROUND: USING NVM

Programming an NVM system is challenging [32, 7]. To

use NVM, programming frameworks must offer users an

appropriate interface. For instance, the Storage Networking

Industry Association (SNIA) has created a low-level program-

ming model for NVM developers [24]. Intel has produced

a tool set that is compatible with the SNIA model, which

is called Persistent Memory Development Kit (PMDK) [25],

and is a collection of libraries in C/C++ and Java. In addition

to the SNIA and Intel efforts, there are many other NVM

programming frameworks [8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23]. Their goal is to facilitate NVM

programming and ease the adoption of NVM.

The two main differentiating features of these frameworks

are: (i) how they identify which data objects to place in

NVM, and (ii) what persistence abstractions they provide.

Many frameworks [10, 15, 16, 9, 18, 11, 13, 14, 17, 25]

expect the user to explicitly mark all the objects that must

be placed in NVM. Such a limited abstraction places a heavy

burden on the programmer and creates many opportunities for

bugs [32, 33, 34]. Furthermore, these frameworks cannot be

directly used with existing codes; they require applications to

be rewritten to include the necessary markings.

In contrast, several new frameworks [21, 22, 23] use a

more programmer-friendly model known as Persistence by

Reachability. In these frameworks, the runtime automatically

ensures that, given a set of entry points into the persistent data

structures in the program, all the data in the program reachable

from such entry points is in NVM. This support significantly

reduces the programmer burden and allows for the reuse of

existing code.

Frameworks also differ in the persistence abstractions pro-

vided. Frameworks supporting epochs [12, 11, 13, 14, 20]

couple logging regions to epochs (e.g., critical sections), and

stores only need to be persisted at the end of the epochs.

Other frameworks allow the logging regions to be specified

by the programmer, and are not tied to a programming

construct [9, 10, 15, 16, 17, 21, 22, 23]

Another difference between frameworks is whether the user

is expected to explicitly identify the persistent stores in the

program. Some frameworks expect the user to mark persistent

stores manually [10, 11, 12, 13, 14, 15, 18, 9, 25], introducing

many opportunities for mistakes. However, others leverage

both compile time and runtime techniques [16, 8, 19, 21,

22, 23, 20, 17] to obviate the need for the programmer to

label persistent stores. As persistence by reachability NVM

frameworks already leverage runtime techniques, they free the

programmer from having to label persistent stores.

III. PERSISTENCE BY REACHABILITY

A. Benefits of the Reachability Abstraction

In Persistence by Reachability [21, 22, 23], the programmer

is only tasked with identifying the few entry points into the

data structures that should be made persistent. These are called

durable roots, and could be, e.g., the dominator pointer to a

graph structure, or the root node of a tree. The framework is

responsible to ensure that, dynamically, all objects reachable

from a durable root (i.e., the durable root’s transitive closure)

reside in NVM.

This model is attractive because it puts a minimal burden

on programmers. Programmers only have to think about which

data structures must be in NVM, instead of explicitly identi-

fying all the objects that must be in NVM. Throughout exe-

cution, data structures are modified and the durable transitive

closure changes. Therefore, the framework monitors program

writes and moves objects to NVM as needed.

These frameworks have three other advantages. First, they

simplify programming by automatically inserting the neces-

sary CLWBs, sfences, and logging operations. Second, they

are compatible with existing code, in that neither the code

must be rewritten to identify the persistent state nor a different

library must be used. Finally, by dynamically placing data in

NVM only when needed, they save power and latency.

B. Reacting to Updates to the Durable Transitive Closure

At runtime, these frameworks guarantee that the durable

root set’s transitive closure always resides in NVM. This re-

quires objects to be moved to NVM as they become reachable

from a durable root. To understand the operations needed,

Figure 1(a) shows a heap containing objects A, B, and C
in DRAM, and E and F in NVM. F is a durable root. An
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arrow from object i to j means that a field in i has a reference

to j. Each object has a header state with 2 bits: the Forwarding
and Queued bits. Their functionality is explained below.

DRAM NVM
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(b)
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Fig. 1: Persistence by reachability example.

Suppose that F is updated to point to A instead of E. To

ensure that the durable transitive closure is completely within

NVM, before performing the write that makes F point to

A, the framework must transparently move both A and its

transitive closure (i.e., the objects pointed by A, recursively)

to NVM. This is done iteratively, using a worklist of objects

starting with A. For each object obj in the worklist (e.g., A),

the framework does:

1) Create a copy of obj in NVM with a set Queued bit.

2) Update the original obj by setting its Forwarding bit and

making it point to the object’s new location.

3) Search obj’s fields for references to other objects to be

added to the worklist.

In the first step, the object is copied to NVM with a Queued

bit set to indicate that the object’s transitive closure is still

being processed. All the objects in the transitive closure being

moved will set their Queued bit, which will only get reset

once there are no more objects within the worklist to move to

NVM.

Setting the Queued bit is necessary for correct execution

in multithreaded environments. It ensures that another thread

does not prematurely update a field somewhere to point to an

object copied to NVM before the object’s transitive closure is

made durable. Hence, any write must check the Queued bit

and wait to perform until the bit is reset.

Step two repurposes the original object to act as a For-
warding object pointing to the object’s new NVM location.

Forwarding objects are essential to allow pointers in DRAM

to be lazily updated. The alternative would be to stop the

execution of all the threads and update all the pointers that

point to the old object in DRAM to point to the new object

in NVM. This is eschewed by persistence by reachability

frameworks because it would have prohibitive performance

overheads. Instead, when accessing an object, the framework

first checks whether the object is a forwarding object by

checking its Forwarding bit. If it is, the NVM location of the

object is accessed. Note that forwarding objects are always in

DRAM and point to NVM.

The third step is to search for objects that need to be added

to the worklist. Specifically, the framework checks all of the

objects pointed to by obj and sees whether they are already in

NVM. If not, they are added to the worklist. It is necessary to

move these objects to NVM because they are now reachable

from the durable root set. For each of the objects moved to

the worklist, steps one to three are repeated, iteratively.

Figure 1 (b) shows the state of the heap after A has been

processed. The original A is now a forwarding object to A in

NVM, and the latter has the Queued bit set. Also, B is added

to the worklist since it is pointed to by A.

Figure 1 (c) shows the final state after the object movement

completed. F points to A in NVM, there are two forwarding

objects, and all Queued bits are clear. Forwarding objects

are only temporary; during garbage collection, this level of

indirection is removed and forwarding objects are deallocated.

Finally, the framework also automatically inserts any nec-

essary instructions before and after the write. They may be

CLWB and sfence after the write and, if execution is within a

transaction, a logging write (plus its CLWB and sfence) before

the write.

C. Required Software Checks

A persistence by reachability framework needs to include

checks around loads and stores. First, if a persistent object

is being updated to point to an object in DRAM, before the

write takes place, the actions in Section III-B are performed.

Determining whether an object is in the NVM or DRAM heap

requires a check on the object’s virtual address.

Moreover, before any read or write to an object, one needs

to determine whether the object is a forwarding one (i.e., its

Forwarding bit is set). If it is, its forwarding pointer must be

followed to retrieve the object’s true location in NVM. Note

that, if the object is in NVM, it cannot be a forwarding one.

Furthermore, before an object can be pointed to by a durable

object, one needs to determine whether the object is being

processed by another thread to become part of the durable

root’s transitive closure. This check is required to avoid the

inconsistency of a durable object pointing to an object that

is not yet part of the durable set. Hence, the software checks

if the object is in NVM and has its Queued bit set. If both

are true, the object’s transitive closure is being processed by

another thread, and pointing to the object must be delayed

until the Queued bit is cleared.

More explanation can be found in the description of the

AutoPersist persistence by reachability NVM framework [21].

IV. P-INSPECT: MAIN IDEA

In persistence by reachability frameworks [21, 22, 23], all

the software checks described, plus some runtime decisions

based on the results of these checks [27], and the insertion

of CLWB, sfence, and logging operations have a large perfor-

mance impact. We will show in Section IX that they contribute

with 22–52% of the instructions in a set of workloads. This

is a significant price to pay for the programmability afforded

by persistence by reachability. Importantly, most of the checks

turn out to require no action. This is because finding objects

that are forwarding or whose transitive closure is being moved
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to NVM is not the common case. In this paper, we propose

hardware support to eliminate most of this overhead.

We call our scheme Persist-Inspect, or P-INSPECT. It fo-

cuses mostly on reducing the overhead of the checks per-

formed before read and write accesses. It also reduces the

overhead of the CLWB and sfence instructions that are added

to persistent writes. We consider each case in turn.

A. Minimizing the Overheads of Checks

In P-INSPECT, we envision every application read and write

to check certain state in hardware. If the check resolves that

no special action is needed—recall that this is the common

case by far—the read or write completes normally. Otherwise,

the hardware automatically invokes a software handler, which

performs some checks and extra operations, and also performs

the read or write.

To understand the types of checks performed by the hard-

ware, consider the most general operation, where a field in an

object (call it Holder object) is set to point to another object

(call it Value object). We represent this as ObjH .field = ObjV .

Based on the discussion in Section III, we propose to

perform the four checks shown in Table I in hardware, rather

than in software as in current systems. The first check is

whether the holder and/or the value objects are allocated in

NVM or DRAM. If the code is attempting to have an NVM

holder object point to a DRAM value object, a software

handler will be invoked. The software will copy the value

object and its transitive closure to NVM before performing

the write.

TABLE I: Hardware checks performed by P-INSPECT.

HW Check HW Needed

Holder and/or value objects in NVM or DRAM? Virtual addresses
Holder and/or value objects are forwarding? Bloom filter
Is the value object’s transitive closure being processed? Bloom filter
Is execution inside a Xaction? Register bit

The second check is whether the holder and/or the value

objects are forwarding objects. If any is, the software will be

invoked. It will follow the forwarding link(s) to obtain the

correct object(s) before performing the read or write.

The third check is whether the transitive closure of the value

object is currently being processed by another thread. Recall

from Section III-C that this check is required to avoid the

inconsistency of a durable holder object pointing to a value

object that is not yet part of the durable set. Depending on

the conditions, the software will be invoked. The software will

wait until the transitive closure is completely processed before

pointing to the value object.

The final check is whether the execution is inside a trans-

action (Xaction). If so, the software may need to perform a

logging operation before the write.

Table I also shows the simple hardware that P-INSPECT

uses to perform these checks quickly. Specifically, whether the

objects reside in NVM or DRAM can be determined by their

virtual addresses. To detect whether an object is a forwarding

one, P-INSPECT uses a bloom filter that keeps the addresses

of all the current forwarding objects. Similarly, whether the

transitive closure of an object is being processed is detected

by accessing another bloom filter that keeps the addresses of

all such current objects. Finally, whether the execution is inside

a Xaction is determined by a register bit that is automatically

set and cleared in hardware when a Xaction starts and ends,

respectively.

With this hardware support, P-INSPECT minimizes the

checking overheads of persistence by reachability. Specifically,

write and read instructions automatically trigger the checking

hardware described. In the common case when the hardware

determines that no special action is needed, the write or read

is performed at high speed.

In the uncommon case when the hardware determines that

a special action is needed, a software handler is automatically

invoked. The handler reads information from the header of

the software object structures to determine what actions to

take before performing the access— i.e., copy objects, follow

forwarding pointers, wait until a transitive closure is fully

processed, or log a value inside a Xaction.

B. Minimizing Persistent Write Overheads

A second overhead in practically all NVM frameworks is

the fact that performing a persistent write typically requires

executing a CLWB and, depending on the persistency model,

an sfence (Section II).

P-INSPECT minimizes this overhead by supporting one type

of persistent write operation that combines the write, CLWB,

and sfence. Such operation interacts efficiently with the cache

coherence protocol. It can be automatically invoked when the

hardware performs the write, and can also be invoked by the

programmer.

V. P-INSPECT DESIGN

A. Bloom Filter Support

As indicated in Section III, Forwarding objects are a key

component of a high-speed persistence by reachability NVM

framework. When an object A needs to be moved from DRAM

to NVM, setting-up a forwarding object induces only modest

overhead on the critical path of the application. The alternative

is: (i) block all the other threads of the application, (ii) traverse

the heap to find all the pointers to object A and to its transitive

closure [23], and (iii) update these pointers to point to new

objects now allocated in NVM. These actions are on the

critical path of the application.

Unfortunately, in frameworks with forwarding objects, on

an access to an object, one needs to check the Forwarding bit

of the object and, if set, follow a pointer to access the correct

object in NVM. In addition, on an access to a value object,

one needs to check its Queued bit, and only proceed with the

access when the bit is clear.

These checks are on the critical path. However, typically,

the bits are clear. Hence, P-INSPECT introduces two bloom

filters that quickly return whether an object’s Forwarding or

Queued bits are set. These filters are called Forwarding (FWD)

and Transitive Closure (TRANS), respectively.
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FWD Bloom Filter. Immediately before the runtime sets up

a forwarding object in DRAM, the runtime inserts the base

address of the object in the FWD bloom filter. Later, on a

read or write to an object, the hardware searches the FWD

filter and determines whether the object is a forwarding one.

When the FWD bloom filter fills-up to a certain threshold,

the hardware wakes up a Pointer Update Thread (PUT). The

PUT traverses all live objects of the volatile heap. When

it identifies a pointer to a forwarding object, it updates the

pointer to point to the corresponding NVM object. When the

PUT has traversed all the objects, it clears the FWD bloom

filter in bulk. The now inaccessible forwarding objects will

later be reclaimed by the garbage collector.

Section VI discusses the implementation of the FWD filter

so that the PUT can operate in the background without stalling

program threads or losing any filter information.

TRANS Bloom Filter. Immediately before a value object in

the worklist for a transitive closure being processed is moved

by the runtime to the NVM, the runtime inserts the base

address of the object in the TRANS filter. Later, on an access

to a value object, the hardware searches the TRANS filter and

determines whether the object is a queued one.

As soon as the thread that is processing the transitive closure

sets-up forwarding objects for all the objects in the transitive

closure, it clears the TRANS bloom filter in bulk.

B. New Operations

To access the bloom filters, P-INSPECT introduces the new

operations shown in Table II. Six of them operate as store

instructions and one as a load. They all take at most a memory

address and a register as arguments. A possible implementa-

tion in x86 could use existing store and load opcodes preceded

by a prefix. In the table, Ha is the address of a field in a holder

object, Va is the address of the base of a value object, and Addr
is the address of the base of an object.

TABLE II: New operations. In the table, Ha is the address of

a field in a holder object, Va is the address of the base of a

value object, and Addr is the address of the base of an object.

Name What it Does

checkStoreBoth [Ha],Va Performs checks, then Mem[Ha] = Va
checkStoreH [Ha],value Performs checks, then Mem[Ha] = value
checkLoad [Ha],dest Performs checks, then dest = Mem[Ha]
insertBFFWD Addr Inserts Addr in the FWD bloom filter
insertBFTRANS Addr Inserts Addr in the TRANS bloom filter
clearBFFWD Clears the FWD bloom filter
clearBFTRANS Clears the TRANS bloom filter

checkStoreBoth [Ha],Va performs some hardware checks

detailed in Section V-C and, if successful, stores the base

address of the value object into a field of the holder object.

checkStoreH [Ha],value also performs hardware checks and,

if successful, stores the value into a field of the holder object.

checkLoad [Ha],dest performs hardware checks and, if suc-

cessful, loads the contents of a field of the holder object into

a destination register. insertBFFWD Addr and insertBFTRANS

Addr insert the base address of an object (Addr) into the

FWD and TRANS bloom filter, respectively. clearBFFWD

and clearBFTRANS clear the FWD and TRANS bloom filter,

respectively.

In the first three operations, if the hardware checks are

unsuccessful, the write/read is not performed and a software

handler is invoked. We now examine the checks and the

software handlers.

C. Hardware Checks Before Writes/Reads

Table III shows the hardware checks performed by the

checkStoreBoth, checkStoreH and checkLoad operations.

TABLE III: Checks performed by the checkStoreBoth (CSB),

checkStoreH (CSH), and checkLoad (CL) operations.

Hardware Check Operation
CSB CSH CL

Is Base(Ha) in NVM or DRAM? � � �
Is Va in NVM or DRAM? �
Is Base(Ha) in the FWD bloom filter? � � �
Is Va in the FWD bloom filter? �
Is Va in the TRANS bloom filter? �
Is execution inside a Xaction? � �

checkStoreBoth (CSB). This operation checks the most con-

ditions. The first two conditions are whether the base addresses

of the two objects accessed (i.e., Base(Ha) and Va) are in NVM

or in DRAM. This information is attained by examining the

objects’ virtual addresses, which tell whether the objects are in

NVM or DRAM. The Base(Ha) is directly obtained from the

instruction, which contains base plus offset for Ha. The next

two conditions are whether the two objects are forwarding

objects. This is obtained by hashing Base(Ha) and Va for

membership in the FWD bloom filter. The next condition is

whether the value object is currently being processed as part

of a transitive closure worklist. This information is obtained

by hashing Va for membership in the TRANS bloom filter.

Finally, the last check is whether the execution is inside a

transaction. This is obtained by reading a register bit.

Given all these checks, there are three cases when the

hardware can complete the checkStoreBoth operation by per-

forming the write without invoking the software. These three

cases are shown in the top three rows of Table IV.

The first row is the case when both objects are in NVM, the

value object is not in the TRANS bloom filter, and execution

is not inside a Xaction. Since the value object is not in the

TRANS bloom filter, there is no need to wait. Further, since

execution is not in a Xaction, there is no need to log. Hence,

checkStoreBoth performs a read and a persistent write.

The second row is when both objects are in DRAM and not

in the FWD bloom filter. They are volatile, non-forwarding

objects. checkStoreBoth simply performs a read and a non-

persistent write to the holder. There is no need to wait for any

transitive closure or perform any logging.

The third row is when the holder is a non-forwarding object

in DRAM, and the value object is in NVM. Since having a

pointer from DRAM to NVM is always fine, checkStoreBoth

simply performs a read and a non-persistent write to the holder.
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TABLE IV: Execution flows for stores. Empty boxes (-) can take any values.

Conditions Action
Where is Base(Ha) Where is Va? Va in Va in In Taken

Base(Ha)? in FWD? FWD? TRANS? Xaction?

NVM - NVM - false false HW
DRAM false DRAM false - - HW
DRAM false NVM - - - HW
DRAM true - - DRAM - true - - SW: �
NVM - DRAM NVM - - true - SW: �
NVM - NVM - false true SW: �

checkStoreH (CSH). This operation is like checkStoreBoth,

except that it does not read from a value object. Instead, it

reads from a primitive type like an integer. Hence, check-

StoreH does not check anything related to any value object

Va (Table III).

As a result, checkStoreH can perform the operation in

hardware under the same three cases as checkStoreBoth (Ta-

ble IV)— except that there is no check for Va conditions.

Specifically, checkStoreH performs the read and write and

completes if (i) the holder is in NVM and execution is not

in a Xaction (first row) or (ii) the holder is a non-forwarding

object in DRAM (second and third rows).

checkLoad (CL). Since checkLoad is a read of the holder

object, we only need to ensure that the read gets the correct

address. Hence the only checks performed are whether the

base of Ha is in NVM or DRAM, and whether the object is

a forwarding one (Table III). There is no value object and no

logging is ever needed.

Given these checks, there are two cases when checkLoad

can perform the read and complete. They are the top two rows

of Table V. One is when the object is in NVM; the other is

when it is in DRAM and is not in the FWD bloom filter.

TABLE V: Execution flows for loads.

Conditions Action
Where is Base(Ha)? Base(Ha) in FWD? Taken

NVM - HW
DRAM false HW
DRAM true SW: �

D. Software Handlers

In all the other conditions not covered in Section V-C, the

hardware does not perform the read or write. Instead, it invokes

one of the following 4 software handlers.

Handlers for Writes. As can be seen in Table IV, there

are three possible cases when checkStoreBoth or checkStoreH

invoke a software handler.

The first case, shown in Row 4, invokes handler � when:

(i) the holder object is in DRAM, and (ii) the value or holder

objects are in the FWD bloom filter (i.e., either one or both). In

this case, the software needs to check if indeed these objects

are forwarding and, if so, follow the forwarding pointer(s)

to get to the correct object(s). Recall that a bloom filter can

produce false positives (but never false negatives). Hence, to

be certain that the object(s) are forwarding ones, the software

needs to check the actual Forwarding bits in the headers of

the object(s)’ software structures.

Further, before performing the write, the software will have

to wait until the completion of any in-progress transitive

closure processing that includes the value object, and will have

to create a log entry if execution is in a Xaction. After that,

the software may perform a persistent or a regular write.

We refer to handler � as checkHandV, and show it in

Algorithm 1. In Lines 2 and 4, it checks the Forwarding bits

of the holder and value objects, respectively, and follows the

forwarding links, if needed.

Then, CheckHandV determines if the holder object is per-

sistent (i.e., it is in NVM or is Forwarding) (Line 5). If it is

not, the algorithm performs a non-persistent write (Line 18).

Otherwise, we need to check if the value object is persistent

(Line 6) and, if it is not, make it persistent (Line 9). It will

not be persistent if either its virtual address is not in NVM

or it is part of an in-progress transitive closure processing.

The latter condition is indicated with the Queued bit set in

the header of V. The makeRecoverable function (Line 9) will

make it persistent.

After that, if we are in a Xaction, the software creates a

log entry and performs a write to NVM. The instruction used,

called persistentWrite, is discussed in Sec. V-E. This flavor of

persistentWrite includes a CLWB but not an sfence, since we

are inside a Xaction; we will need an sfence at the end of the

Xaction. If we are not in a Xaction, the software performs a

write to NVM. In this case, we use a persistentWrite flavor

that includes a CLWB and also possibly an sfence.

The second case when a software handler needs to be

invoked is shown in Row 5 of Table IV. In this case, we

invoke handler � when: (i) the holder object is in NVM,

and (ii) the value object is in DRAM (may or may not be

a forwarding object), or in NVM and its Queued bit is set

(i.e., it is part of an in-progress transitive closure processing).

Only checkStoreBoth can invoke it.

We refer to handler � as checkV in Algorithm 1. The flow is

like CheckHandV except that no check needs to be performed

on the holder object. This is because the object is in NVM.

Finally, the third case when a software handler needs to be

invoked is Row 6 of Table IV. This case invokes handler �
when: (i) both holder and value objects are in NVM, (ii) the

value object’s Queued bit is clear, and (iii) we are in a Xaction.
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Algorithm 1 Software handlers.

1: function � CHECKHANDV (Ha, Va, Xaction)
2: Read H header & update Ha if needed // forwarding case
3: if isObject(Va) then
4: Read V header & update Va if needed // forwarding case
5: if isPersistent(H) then
6: if !isPersistent(V) then
7: // not in NVM or the Queued bit is set
8: // may wait until Queued is cleared
9: makeRecoverable(V)

10: if Xaction then
11: Write to log // includes a CLWB and sfence
12: persistentWrite [Ha], Va // persistent program store
13: // it includes CLWB but not sfence
14: else
15: persistentWrite [Ha], Va // persistent program store
16: // it includes CLWB and possibly also sfence
17: else
18: store [Ha],Va // non-persistent program store
19:
20: function � CHECKV (Ha, Va, Xaction)
21: Read V header & update Va if needed // forwarding case
22: if !isPersistent(V) then
23: // not in NVM or the Queued bit is set
24: // may wait until Queued is cleared
25: makeRecoverable(V)
26: if Xaction then
27: Write to log // includes a CLWB and sfence
28: persistentWrite [Ha], Va // persistent program store
29: // it includes CLWB but not sfence
30: else
31: persistentWrite [Ha], Va // persistent program store
32: // it includes CLWB and possibly also sfence
33:
34: function � LOGSTORE (Ha, Va, Xaction)
35: Write to log // includes a CLWB and sfence
36: persistentWrite [Ha], Va // persistent program store
37: // it includes CLWB but not sfence
38:
39: function � LOADCHECK (Ha)
40: Read H header & update Ha if needed // forwarding case
41: load [Ha]

This is a simple case. Handler �, which we call logStore,

is shown in Algorithm 1. The handler creates a log entry and

performs a store to NVM. Again, this write includes a CLWB

but no sfence.

Handlers for Reads. As can be seen in Table V, there is

one case when checkLoad needs to invoke a software handler.

It invokes handler � when the holder object is in DRAM

and in the FWD bloom filter. This means that the object

may be forwarding. We refer to handler � as loadCheck in

Algorithm 1. The software checks the Forwarding bit in the

object’s header and, if set, follows the forwarding link (Line

40). Then, it reads the field.

E. Low-Overhead Persistent Write

A write to NVM can be expensive, since it is often followed

by a CLWB, and sometimes even by an sfence. Consider

the worst case when all three operations need to take place

(Figure 2(a)). First, the write itself may have to bring the line

from main memory, as it loads it into an L1 cache in Dirty

state (Steps � to �). The CLWB then needs to find a copy

of the line—which is likely to be in the L1 cache but may

be in any cache in any state, if the line has been accessed by

other cores since the above write. Once the line is found in

a cache, it is written to main memory and a copy is kept in

that cache (Steps � to �). Once the acknowledgment of the

CLWB completion reaches the originating core (Steps 	 to 
),

the sfence retires, allowing a subsequent write to be merged

with the memory system. In the worst case, the combined

operations may require two round trips to memory.
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caches

Shared 
Cache +  
Directory

1
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2
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Fig. 2: Conventional persistent write, CLWB, and sfence (a),

and proposed advanced persistentWrite flavor (b).

We propose a new instruction called persistentWrite that

speeds-up a write to NVM. persistentWrite has three flavors:

one that simply performs a write; one that combines a write

with a CLWB; and one that combines a write with a CLWB

and an sfence. The flavor used depends on whether the write

needs to be followed by CLWB and sfence operations. In

our discussion, we assume that the NVM can be written at

a granularity finer than a cache line [35, 36, 37, 38, 39, 40].

The first flavor is a simple write. The third flavor is the one

that improves performance the most over the state of the art.

The three operations (write, CLWB, and sfence) are performed

with at most one single round trip to memory (Figure 2(b)).

Specifically, the originating core’s persistentWrite operation

first sends the update down the cache hierarchy (Step �). If

the transaction finds a copy of the line, it is incorporated in the

message. Once the message reaches the directory, the directory

is locked. If the directory indicates that the line is in state

Exclusive/Dirty in another cache, that line is recalled and the

owner cache is invalidated. In any case, all cached copies of

the line are invalidated (except in the cache of the originating

core, if it is there). Finally, the update—combined with the

corresponding cache line if the line was dirty in the cache

hierarchy—is sent to NVM to persist (Step �).

The NVM returns an acknowledgment, potentially with

the updated line, to the directory (Step �) and then to the

originating core (Step �). The directory marks that core as

having the line in Exclusive state, and is unlocked. Once the

core receives the acknowledgment, it allows a subsequent write

to proceed. The result is at most a single round trip to memory.

The flavor that combines the write and the CLWB proceeds

in a similar manner.

In all cases, persistent writes from different cores are not

ordered unless they access the same cache line. In such case,

the corresponding directory module serializes and orders them

based on arrival order.
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Finally, the checkStoreBoth and checkStoreH operations

also have the three flavors described. The flavor used depends

on whether the write, if it succeeds, needs to be followed by

CLWB and sfence operations.

VI. P-INSPECT IMPLEMENTATION ISSUES

A. Operation of the FWD Bloom Filter

As a program executes, threads insert the base addresses

of forwarding objects into the FWD filter. Recall from Sec-

tion V-A that when the FWD filter fills to a certain threshold,

the system wakes up the PUT thread. In the background, PUT

updates any pointers to forwarding objects to point to the

corresponding NVM objects, and clears the FWD filter.

To enable this operation, P-INSPECT uses two FWD bloom

filters—call them red and black. They have one extra bit called

Active, which is set for the single FWD filter that is currently

being inserted to.

Suppose that the red FWD filter is currently the active one.

When it fills up to the threshold, PUT wakes up and toggles

the Active bit in both FWD filters. PUT then performs a sweep

of the objects in the volatile heap, processing encountered

pointers to forwarding objects as discussed above. During this

time, since the black FWD filter is now the active one, all

object insertions required by the program are performed on

the black FWD filter. However, object lookups are performed

on both FWD filters. When PUT finishes its traversal, it clears

the red FWD filter and goes back to sleep.

With this approach, PUT execution happens in the back-

ground, without stalling program threads, and no filter in-

formation is ever lost. It is likely that PUT’s execution also

updates pointers to some forwarding objects that were inserted

in the black FWD filter. Hence, the black FWD filter may now

include some objects that are not forwarding anymore. This is

no problem since, at worse, this effect increases the number

of false positives in the FWD bloom filter.

B. Implementing the Bloom Filters

Each process has two FWD bloom filters, each with 2047

bits for the data and 1 bit (the most significant one) for the

Active bit. Hence, a FWD filter covers 4 cache lines in a

machine with 64-byte cache lines. The TRANS bloom filter

only uses 512 bits, which is 1 cache line. Overall, the bloom

filters for a process use 9 cache lines. For each filter, we use

two hash functions, H0 and H1. Each process has all of its

bloom filters in memory in a single page, at a fixed virtual

address. The filters are accessible with virtual addresses.

The operations performed on the FWD bloom filters are

shown in Table VI. The operations on the TRANS filter are

fewer and simpler; we do not show them for simplicity. In an

Object Lookup, we take the object’s address and hash it using

H0 and H1. Then, we read the 2 FWD bloom filters and check

for membership in them.

In an Object Insert, we hash the object’s address using H0

and H1 as before. Then, we read the most-significant cache

line of the two filters and identify which filter is the active

TABLE VI: Operations performed on the FWD filters.

Operation What it Does

Object Lookup Check both FWD filters for address membership
Object Insert Insert address in the active FWD filter
Inactive FWD Zero-out the inactive FWD filter
Filter Clear
Change Active Toggle the active bit in both FWD filters
FWD Filter

one. Finally, we read the three remaining lines of the active

filter and set the appropriate bits in the filter.

In an Inactive FWD Filter Clear, we read the most-

significant line of the two filters and identify the inactive filter.

Then, we read the three remaining lines of the inactive filter

and clear the filter. Finally, in a Change Active FWD Filter
operation, we read the most-significant line of the two filters,

and toggle the active bit in both.

P-INSPECT implements these operations in hardware.

Specifically, P-INSPECT has a BFilter FU functional unit that

helps execute the instructions of Table II. This functional unit

knows the address and layout of the page of bloom filters,

and the hash functions H0 and H1. Given an address, it can

perform H0 and H1 on it, and access the filters.

The left part of Figure 3 shows the P-INSPECT hardware in

the core. In addition to the BFilter FU functional unit with the

two hash functions, there is a bit that indicates if execution is

inside a transaction, and the virtual addresses for: the bloom

filter page, the software handlers, and the base and limit of

the persistent heap.

Core
Object Address

H0

H1

Xaction?
VA of bloom filter page

base
limit

VAs of 
Persistent Heap

L1 Tag and 
Data Array

L1 Cache

L1 Cache Controller

BFilter_FU
BFilter_BufferSW handlers addr

BFilter_Base_Addr

Fig. 3: Implementation of the P-INSPECT architecture.

The operations in Table VI are implemented as follows.

An Object Lookup is performed in hardware, as part of

the checkStoreBoth, checkStoreH, and checkLoad operations.

The lookup uses the BFilter FU functional unit, and is fully

overlapped with the store or load.

An Object Insert is performed by the runtime executing

the insertBFFWD or insertBFTRANS operations in Table II for

the FWD or TRANS filter, respectively. An Inactive FWD

Filter Clear is performed by the PUT thread executing the

clearBFFWD operation in Table II when it has completed its

operations on the volatile heap. Similarly, the TRANS filter is

cleared by a thread executing the clearBFTRANS operation in

Table II when it has completed processing a transitive closure.

Finally, the Change Active FWD Filter operation is performed

by the PUT thread when it wakes up.
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C. Keeping Bloom Filter Data Coherent
In a multithreaded program running on a multiprocessor, we

need to ensure the coherence of the bloom filter data across

cores. To understand the problem, recall that while Object

Lookup is a read-only operation, the other three operations

(Object Insert, Inactive FWD Filter Clear, and Change Active

FWD Filter) are read-write operations that need to be per-

formed atomically. Note that insertBFTRANS and clearBFTRANS

also include write operations. However, as we will see, the

read-only Object Lookup operation is on average over one

million times more frequent than the operations that involve

writes. We want to keep the former fast.
To keep bloom filter data coherent, a simple approach is

to use the protection bits in the TLB for the bloom filter

page. Specifically, when a thread wants to perform a read-

write operation, it sets the owner bit in its TLB entry and

invalidates the TLB entry from the TLBs of the other cores.

Unfortunately, this approach is too slow, as it involves the OS.
A faster approach, used by P-INSPECT, is to use the cache

coherence protocol to maintain the coherence of bloom filter

data. To understand the approach, assume a single bloom filter

that spans a single cache line. When performing an object

lookup, the hardware requests the cache line in Shared state.

When performing the other operations, the hardware requests

the line in Exclusive state. In this case, when the cache obtains

the line, the cache refuses any incoming transaction to the line

(i.e., it locks it) until all the local reads and writes to the bloom

filter are done. Then, it unlocks the line.
A difficulty with this approach is that the bloom filters in

P-INSPECT span 9 contiguous cache lines. In effect, we would

like the coherence protocol to operate on these lines as if they

were “glued” together—i.e., all 9 lines should be fetched at a

time, and all 9 kept in the cache at a time.
To solve this problem, P-INSPECT augments the L1 cache

controller with a register that contains the address of the bloom

filter lines used by the currently-executing process. Since these

9 lines are contiguous, the register only keeps the base address.

We call it the BFilter Base Addr register. In addition, the

controller has a small buffer that has space for the 9 lines of

bloom filter data. We call this buffer the BFilter Buffer, and

its lines are visible to the cache coherence protocol. These

components are shown in the right part of Figure 3.
In an Object Lookup operation, as the BFilter FU func-

tional unit requests the bloom filter lines, the cache controller

attempts to read all 9 lines into the BFilter Buffer in Shared

state. If, as it reads lines, some get invalidated by writes from

other cores, it retries the read. When all 9 lines are obtained,

they are read by the BFilter FU.
In the bloom-filter operations that involve read-write ac-

cesses, we use the most significant line of the red FWD bloom

filter as the Seed. This means that, as the BFilter FU functional

unit requests the bloom filter lines in Exclusive state, the cache

controller attempts to obtain the Seed cache line in Exclusive

state first. Once it attains it, it locks it in the BFilter Buffer and

proceeds to obtain the remaining lines in the BFilter Buffer in

Exclusive state. These lines are also locked. Once all the lines

are present, they are read by the BFilter FU, which performs

the read-write operations. After that, the lines are unlocked

and accept external requests. Since obtaining the Seed cache

line in Exclusive state serializes all the other operations, there

is no data incoherence or deadlock.

With this design, at a context switch, the OS simply

writes back the dirty lines in the BFilter Buffer, invalidates

the BFilter Buffer lines, and updates the BFilter Base Addr

register with the base address of the bloom filters for the new

process. The lines with the bloom filter data of the new process

will be brought into the BFilter Buffer on demand.

VII. RELATION TO FAILURE RECOVERY

If an NVM system is to recover from failures, it needs

software that performs operations such as undo/redo logging or

checkpointing. Such software has to be aware of the memory

persistency model [41] used by the system, since the memory

persistency model determines when, after persistent objects are

written, will the updates reach NVM.

A persistence by reachability framework such as P-INSPECT

does not impact failure recovery. The framework’s goal is

to simplify the programmer’s job by performing two main

tasks automatically: (i) ensure that objects that need to be

persistent are moved from volatile memory to NVM at the

right time, and (ii) ensure that the updates to such objects are

marked as being persistent—and therefore are accompanied by

the correct CLWB and sfence instructions. The actual CLWB

and sfence instructions added with the updates depend on

the memory persistency model used by the system. Hence,

the persistence by reachability framework is cognizant of the

persistency model used; at no point, however, it affects or

needs to know about the failure recovery algorithms.

A related issue is that prior literature has proposed per-core

buffers that buffer stores destined for NVM [42]. Then, there is

hardware that optimizes the write back of these stores to NVM

to improve performance. One concern in this environment is

to honor all inter-thread persistence dependencies. Once again,

these hardware optimizations are orthogonal to the persistence

by reachability framework. The latter simply ensures that

the updates to the buffers are performed transparently to the

programmer, efficiently, and following the memory persistency

model used.

VIII. EVALUATION METHODOLOGY

Modeled Architecture and Infrastructure. We use cycle-

level simulations to model a server architecture with 8 cores

and a main memory of 32 GBs of NVM and 32 GBs

of DRAM. The main architecture parameters are shown in

Table VII. We integrate the Simics full-system simulator [43]

with the SST [44] framework and the DRAMSim2 [45]

memory simulator. To model NVM, we modified the DRAM-

Sim2 timing parameters as shown in Table VII, and disabled

refreshes. We use Intel SAE [46] on top of Simics for

OS instrumentation, the Synopsys Design Compiler [47] to

evaluate the RTL implementation of CRC hash functions, and
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CACTI [48] for the area and energy analysis of the hardware

structures at 22nm.

For the runtime system, we use the most recent version of

the AutoPersist framework [21]. AutoPersist is built within

the Maxine Java Virtual Machine (JVM) [49]. In addition, to

perform a lengthy analysis of the behavior of the architecture,

we use Pin [50]. We augment the Java compiler and runtime

to communicate the required information to our simulation

infrastructure, both to Simics and Pin.

TABLE VII: Architectural parameters used for evaluation.

Processor Parameters

Multicore chip 8 OoO cores, 2GHz, 2 issue (and 4 issue)
Ld-St queue; ROB 92 entries; 192 entries
Cache Line Size 64 bytes
DL1 cache 32KB, 8-way, 2-cycle access latency
L2 cache 256KB, 8-way, 8-cycle data, 2-cycle tag lat.
L3 cache 1MB/core, 16-way,

22-cycle data, 4-cycle tag latency
Cache coherence MESI protocol
L1 TLB 64 entries, 4-way, 2-cycle latency
L2 TLB 1024 entries, 12-way, 10-cycle latency

Bloom Filter Parameters and Analysis

Size FWD: 2047 bits; TRANS: 512 bits
Hash function CRC; 2-cycle latency; Area: 1.9 ∗ 10−3mm2;

Dyn. energy: 0.98pJ ; Leak. power: 0.1mW
Call to PUT When 30% of FWD bloom filter bits are set
BFilter Buffer Area: 0.023mm2; Leakage power: 1.9mW ;

Rd/Wr energy per access: 12.8/13.1pJ
Lookup access overlaps with ld/st (2 cycles)

Main-Memory Parameters

Channels; Banks DRAM: 2; 8 NVM: 2; 8
tCAS -tRCD-tRAS DRAM: 11-11-28; NVM: 11-58-80
tRP ,tWR DRAM: 11,12 NVM: 11,180
Freq; Bus width 1GHz DDR; 64 bits per channel

Host and Runtime System Parameters

Host OS; Runtime Ubuntu Server 16.04; Maxine JVM 2.0.5

Configurations. We compare four different designs.

Baseline: It uses the unmodified AutoPersist [21], a Java pro-

gramming framework that provides persistence by reachability.

AutoPersist performs all the runtime checks and object moves.

P-INSPECT--: AutoPersist plus our proposed P-INSPECT

hardware to perform the required checks for loads and stores,

but does not include the optimization for speeding-up persis-

tent writes (Section V-E).

P-INSPECT: AutoPersist plus the complete P-INSPECT de-

sign, including the optimization for persistent writes.

Ideal-R: AutoPersist without all the checks and object moves

required to implement persistence by reachability. It is an ideal

runtime where the user identified all persistent objects. It does

not include the persistent write optimization.

Workloads. We do experiments on a key-value store using

different backends, and also on several kernel applications.

Key-Value Store: We implement a persistent version of

a key-value store by modifying QuickCached [51] to use

the AutoPersist framework to persist its internal key-values.

For our evaluation, we use four different, commonly used

backends: (i) pTree uses a Java implementation of the IntelKV

B+ tree [52] and persists both all inner and leaf nodes; (ii)

HpTree uses the same data structure as pTree, but it is a hybrid

design that only persists the leaf nodes of the tree, similar to

IntelKV; (iii) hashmap uses a HashMap data structure for its

internal storage; and (iv) pmap uses the Map implementation

from the Java PCollections library [53].

To evaluate the performance of our key-value stores we

use the Yahoo! Cloud Serving Benchmark (YCSB) [54]. This

benchmark suite is commonly used for the evaluation of

cloud storage services. We populate our key-value stores to

a memory footprint of 12.5GB for pTree and HpTree, 12.4GB

for hashmap, and 12.8GB for pmap. In our evaluation, we run

three of the YCSB workloads: (i) the write-intensive workload

A, (ii) the read-intensive workload B, and (iii) workload D,

which is both read intensive and also inserts new values into

the data structures.

Kernel Applications: These are several kernels that perform

a collection of read, write, insert, and delete operations on

persistent data structures. In total, we use six different kernel

applications: (i) ArrayList is a persistent version of the Java

ArrayList; (ii) ArrayListX is identical to the previous kernel,

but uses transactions to perform in-place insertions and dele-

tions; (iii) LinkedList is a doubly linked list implementation;

(iv) HashMap is a HashMap implementation; (v) BTree is

a B-tree implementation; and (vi) BPlusTree is a B+ tree

implementation. We populate the kernel applications with one

million elements before simulation.

Simulation Methodology. We perform two types of simula-

tions. One is architectural simulations to evaluate performance

using a cycle-level simulator. The other is behavioral simula-

tions using Pin to characterize the behavior of applications and

bloom filters over long execution intervals.

For the detailed architectural simulations, we perform full-

system simulations. We warm-up the architectural state by

running, per core, 200M instructions before simulating 1B

instructions. For the behavioral simulations, we run hundreds

of billions of instructions with Pin.

IX. EVALUATION

A. Architectural Evaluation
The goal of P-INSPECT is to minimize the overheads

of programmable NVM frameworks. P-INSPECT targets two

main sources of overhead in such frameworks: (i) the runtime

checks that need to be performed on the objects to determine

their state, and (ii) the cost of the persistent write operations.

In this section, we consider these overheads.

Figure 4 shows the instruction count of the kernels for the

different configurations. The count is normalized to that of

the baseline configuration. We see that P-INSPECT-- and P-

INSPECT greatly reduce the number of instructions executed

across the board. On average, they reduce the number of

instructions by 46%. Kernels that have a larger number of

stores like ArrayList attain higher instruction reductions than

those that are more read-intensive like BTree. Recall that stores

require more checks.

The figure also shows that P-INSPECT-- and P-INSPECT

have approximately the same instruction count. Further, they
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Fig. 4: Instruction count of the kernel applications.

are fairly close to the Ideal-R configuration, which achieves

an average 54% reduction.

Figure 5 shows the total execution time of the kernels. The

figure is organized as Figure 4, except that we have broken

down the baseline bar into time to perform: (i) the checks

(baseline.ck), (ii) the persistent writes, approximately (base-

line.wr), (iii) the persistency by reachability runtime opera-

tions such as logging and copying objects between DRAM and

NVM (baseline.rn), and (iv) the rest (baseline.op). Baseline.op

corresponds to a true ideal system with no persistency by

reachability and (unlike Ideal-R) no NVM.

Fig. 5: Execution time of the kernel applications.

We see that, in the baseline, the checking overhead is

substantial, while the persistent write overhead is sometimes

significant, and the runtime overhead is only significant when

there is logging (ArrayListX). Both P-INSPECT-- and P-

INSPECT deliver significant speed-ups. On average, they are

24% and 32% faster than baseline, respectively. The speed-ups,

of course, are smaller than the instruction count reductions.

However, the trends are largely similar.

We see a difference between P-INSPECT-- and P-INSPECT

for some applications. Although these two configurations have

similar instruction counts in Figure 4, P-INSPECT has a lower

execution time for applications that have many persistent

writes, like ArrayList and HashMap. This is especially the

case when these writes miss in the cache hierarchy. In this

case, thanks to our design, combining a write with a CLWB

and an sfence has a substantial performance impact.

Finally, the average speed-up of P-INSPECT is very close

to that of Ideal-R, which reduces execution time by 33%. In

some cases, P-INSPECT is even faster than Ideal-R. The reason

is that P-INSPECT includes the persistent write optimization

of Section V-E, while Ideal-R does not.

Figures 6 and 7 show the instruction count and the execution

time, respectively, for the key-value stores. The figures are

organized as the previous ones. In general, the trends for

instruction reduction and execution time reduction are like for

kernels, except that the improvements are relatively smaller.

This is because these workloads perform relatively more non-

memory access instructions than the kernels.

From Figure 6, we see that, on average, P-INSPECT reduces

the executed instructions by 26%. The same reduction is

obtained by P-INSPECT--. This reduction is close to the

31% reduction attained by Ideal-R. The instruction reduction

is larger in the write-heavy workload A than in the other

workloads. This is because writes are more check-intensive.

In hashmap-A the reduction reaches 50%.

Figure 7 shows that, on average, P-INSPECT-- and P-

INSPECT reduce the execution-time of the key-value stores

by 14% and 16%, respectively, relative to baseline. These

are substantial reductions for real-world workloads. Note that

Ideal-R delivers a 17% reduction in execution time, which

is only 1 percentage point more than P-INSPECT. Hence,

the P-INSPECT hardware effectively hides the overhead of

persistence by reachability. Further, for some persistent write

intensive workloads such as hashmap-A, P-INSPECT is faster

than Ideal-R.

Figure 7 breaks down the execution time of the applications

in baseline like in Figure 5. We see that, as in Figure 5, the

checking overhead is the most dominant one.

To get another insight into the benefit of accelerating per-

sistent writes, we have isolated the persistent writes within all

the applications, and added-up the total time it takes for them

to complete (i.e., we do not consider any overlapping with

other instructions). We compare the time it takes to execute

the separate write, CLWB, and sfence instructions against

when the instructions are combined in a persistentWrite P-

INSPECT operation. This metric ignores any overlap that these

instructions may have with any other instruction.

It can be shown that our persistentWrite operations that

combine writes, CLWBs, and sfences take, on average, 15%

less time than the instructions separated. In fact, for ArrayList,

the reduction is 41%.

B. Bloom Filter Evaluation

We now characterize the behavior of P-INSPECT and its

bloom filters over long execution runs using Pin. The TRANS

bloom filter is cleared often, when the processing of a tran-

sitive closure completes. Because of that, we find that the

TRANS bloom filter has a false positive rate close to zero.

Hence, we do not consider it further.

The FWD bloom filter is cleared less frequently, by the

PUT thread. PUT is woken up when FWD has over 30% of

its bits set. We find that, on average, 357 forwarding objects

are inserted in FWD before this threshold is reached. Our

experiments also show that the average false positive rate

of FWD across all the benchmarks is 2.7%. However, the

actual rate of calling a software handler because of a false

positive is less than 1%. This is because, in many scenarios,

the outcome of the FWD check does not determine whether

to call a software handler (Tables IV and V).

To characterize FWD, we run all the applications with the

same configuration parameters as before, but with the ratio of

operations of the YCSB workloadd: 5% of inserts and 95%
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Fig. 6: Instruction count of the YCSB workloads.

Fig. 7: Execution time of the YCSB workloads.

reads. We collect 50 samples per application and report the

mean. Table VIII shows the results for each application.

TABLE VIII: Characterization of the FWD bloom filter.

Applic. # Inst. # FWD Avg. PUT
between checks per FWD instr.

PUT calls insert occup.
(mill.) (thous.)

ArrayList 26,326 3,006.0 14.5% 0.0%
LinkedList 3,175 163.5 15.9% 0.2%
ArrayListX 43,778 4,937.4 15.8% 0.0%
HashMap 928 134.8 15.9% 1.6%

BTree 237 10.4 15.9% 6.5%
BPlusTree 45,367 3,201.0 15.9% 0.0%
pTree-D 478 22.4 16.0% 3.6%

HpTree-D 426 11.1 15.8% 3.8%
hashmap-D 969 85.2 16.1% 1.8%

pmap-D 92 1.9 15.9% 18.4%
Average 12,177 1,157.4 15.8% 3.6%

Column 2 shows the number of instructions executed be-

tween invocations of the PUT. We see that this number ranges

from 92 million to 45 billion. Generally, PUT is invoked rarely.

Column 3 shows the number of FWD checks divided by the

number of FWD insertions. We see that FWD reads are much

more frequent than writes: on average, we have 1.15 million

reads per write. Column 4 shows the average FWD occupancy.

We take a sample every time that the program performs a FWD

lookup. We see that this number is low. Its range is 14-16%.

Column 5 shows the additional instructions executed by the

PUT relative to the application instructions. On average, we

see that the PUT overhead is very small.

The net effect of these measurements is that the PUT does

not need to be frequently invoked for the FWD to exhibit a

low false positive rate. Moreover, the results show that bloom

filters are a low cost hardware mechanism that is very effective

to handle object checks accurately.

Finally, we perform a sensitivity analysis of the size of

FWD. The goal is to show how the FWD size affects the

frequency of calling the PUT. Figure 8 shows the normalized

number of instructions between PUT invocations for FWD

sizes ranging from 511 bits to 4095 bits. We use the same

target occupancy as before. Instruction counts for each appli-

cation are normalized to the 2047-bit case. The numbers on

the bars are the % increase in instruction count due to PUT.

Fig. 8: Normalized number of instructions between PUT

invocations for different FWD sizes. The numbers on the bars

are the % increase in instruction count due to PUT.

We see there is an almost linear relationship between the

FWD size and the frequency of PUT invocations to clear the

FWD. There is a tradeoff between FWD size and frequency of

PUT invocation. Our 2047-bit design is a good design point.
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C. Other Evaluation

To gain more insight into P-INSPECT, we perform two

additional experiments. In the first one, we measure, for each

application, the percentage of accesses to NVM addresses and

the reduction in execution time of P-INSPECT over baseline.

Table IX shows the results. We see that both metrics are

broadly correlated. There are some cases, however, where

the execution time reductions are higher than expected from

the fraction of NVM accesses. This effect is due to a higher

fraction of persistent writes that miss in the caches, and benefit

from our persistentWrite optimization.

TABLE IX: Application NVM accesses and reduction in

execution time.

Application NVM accesses Execution Time
Reduction

ArrayList 13.3% 37.4%
LinkedList 6.4% 15.6%
ArrayListX 14.8% 55.9%
HashMap 8.3% 37.7%
BTree 6.3% 16.2%
BPlusTree 11.3% 24.4%
pTree-D 6.1% 12.8%
HpTree-D 2.8% 12.7%
hashmap-D 7.2% 20.5%
pmap-D 1.0% 9.9%

In a second experiment, we re-run our evaluation with 4-

issue (rather than 2-issue) cores. The average speed-ups of

P-INSPECT--, P-INSPECT and Ideal-R over baseline are

23%, 31% and 33% for the kernels, and 14%, 16% and 17%

for the workloads, respectively. These numbers are practically

the same as for 2-issue. The reason is twofold. First, all

the environments become faster (including baseline and P-

INSPECT); second, the long-latency NVM accesses stall the

pipeline for both issue width designs.

X. RELATED WORK

System Support for NVM. The systems and storage commu-

nities have proposed many systems and frameworks to assist

NVM integration. Besides the programming frameworks of

Section II, researchers have proposed to redesign the software

systems. Examples include BPFS [12], NOVA [55, 56, 57, 58],

Aerie [59] and PMFS [60]. These systems have different order-

ing and consistency attributes, and they handle their metadata

information differently, but all aim for high performance NVM

accesses in hybrid memory.

Hardware Optimizations for NVM. Many works provide

hardware optimizations for NVM operations. In general, their

goal is to reduce the overhead of persistent writes, either by

introducing new persistency models [41, 18], or by removing

persistent writes from critical paths and minimizing logging

overheads [61, 62, 63, 64, 65, 66, 15, 67, 42, 68, 69].

As NVM normally relies on transactions for memory per-

sistency, most of the optimizations focus on reducing the

persistency overhead by relaxing the persistence order. For

instance, WHISPER [15] proposes high-level ISA primitives

to decouple ordering from durability. Other works propose

hardware to optimize different aspects of NVM memories:

efficient checkpointing [70, 71], improved NVM encryption

operations [72, 73, 74, 75], and persistent object translation to

accelerate the process of identifying the addresses of persistent

objects [76, 77]. There is no work that proposes hardware

techniques for supporting programmable NVM frameworks

per se. These proposals are orthogonal to our work and, in

fact, many can be combined with our work.

Recognizing Object State. Persistence by reachability re-

quires dynamic fine-grain state information about each individ-

ual object. Existing hardware cannot provide the information

needed or as fast as it is needed. For instance, bounds checking

hardware [28] cannot be used to find out conditions such as

whether an object is a Forwarding one or whether its Transitive

Closure is being processed (Table I). On the other hand,

ARM’s Memory Tagging Extension (MTE) [29], SPARC’s

Application Data Integrity (ADI) [78] or CHERI [30, 31] could

be used for fine-grain identification. These proposals tag mem-

ory locations with bits that identify their state. However, these

approaches are too slow for production code. As documented

in [30, 79], MTE’s, ADI’s, and CHERI’s precise exception

mode introduces significant performance overheads. Since the

hardware first needs to fetch the state (tag or capabilities) of

the memory location and check if a precise exception needs

to be raised, the original operation can only be performed

after this load and check. In P-INSPECT, this overhead does

not exist. By using bloom-filter hardware checks, P-INSPECT

removes the loading of state from the execution’s critical path.

XI. CONCLUSION

To attain both user-friendly and high-performance NVM

frameworks, this paper introduced P-INSPECT, the first hard-

ware architecture targeted to speeding-up persistence by reach-

ability. P-INSPECT retains programmability and eliminates

most of the execution overhead. For a set of workloads, it

reduces the number of instructions executed by 26%, and

the application execution time by 16%, delivering similar

performance to that of an ideal runtime.
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