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Abstract—With cloud providers constantly seeking the best
infrastructure trade-off between performance delivered to cus-
tomers and overall energy/utilization efficiency of their data-
centres, hardware disaggregation comes in as a new paradigm
for dynamically adapting the data-centre infrastructure to the
characteristics of the running workloads. Such an adaptation
enables an unprecedented level of efficiency both from the
standpoint of energy and the utilization of system resources. In
this paper, we present — ThymesisFlow — the first, to our knowl-
edge, full-stack prototype of the holy-grail of disaggregation of
compute resources: pooling of remote system memory. Thymesis-
Flow implements a HW/SW co-designed memory disaggregation
interconnect on top of the POWERY architecture, by directly
interfacing the memory bus via the OpenCAPI port. We use
ThymesisFlow to evaluate how disaggregated memory impacts a
set of cloud workloads, and we show that for many of them the
performance degradation is negligible. For those cases that are
severely impacted, we offer insights on the underlying causes and
viable cross-stack mitigation paths.

Index Terms—Disaggregation; OpenCAPI; POWERY;

I. INTRODUCTION

In the constant race between delivering performance to cus-
tomers and maintaining high energy efficiency, cloud systems
have gone through many transformations: starting from an
infrastructure composed of a series of computers connected to
the network and practically rented to customers, down to an
abstract infrastructure where the mapping between hardware
and applications is hidden by an intermediate software layer.
The latter, usually referred to as Software-Defined Infras-
tructure, is usually implemented via server virtualization,
containerized applications and software-defined networking.

Ideally, software-defined resource orchestration aims at de-
livering, at runtime, exactly the amount of resources required
by a given workload. In other words, the ultimate goal is to
synthesize virtual hardware platforms with the right resource
mix, without any over- or under-subscriptions. However, the
current software-defined techniques (i.e., virtualization and
containers), do not take into consideration computing re-
sources, such as memory, CPUs, and accelerators, outside the
physical server boundaries. The overall resource proportional-
ity, that is fixed within each server, has to be carefully decided
at installation time. For this reason, today it is common to have
specialized machines tailored to specific types of workloads
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(CPU intensive, accelerator intensive, etc.) leading often to
a fragmented system that is difficult to fully exploit. Given
the aforementioned constraints, and taking into account that
memory/CPU demand ratios, of typical cloud workloads, span
across three orders of magnitude [1], [2], it becomes a complex
scheduling problem to keep a high utilization of comput-
ing resources. To this end, the currently available software
techniques, and scheduling approaches are not capable of
delivering such a level of efficiency, targeted by the cloud
providers, in the long run. Apart from the energy concerns,
that heavily depend on the ability to improve utilization of a
given infrastructure, the decoupling of hardware refresh cycles
of the various hardware components, that today have to be
updated concurrently, is most desirable.

Hardware-level disaggregation enables the novel organiza-
tion of the data-centre infrastructure as a pool of heteroge-
neous resources (i.e. CPUs, memory, accelerators, network
interfaces, and storage devices) that can be interconnected
on-demand to form logical servers that closely match the
requirements of a given workload. This paradigm provides
several important benefits. First, it enables the components
of a computing system to be practically integrated on the
same bus, regardless of their physical location in the data-
centre, thus significantly improving resource utilization (e.g.,
unused local system memory can be provided for use to a
neighbour server). Second, in some cases, it eliminates the
need for software-level, scale-out techniques which exchange
data over the (sometimes over-subscribed) host network stack
and, therefore, improves the actual data flow of a given
workload. Last but not least, it unlocks the refresh cycles of
hardware components in the data-centre.

Undoubtedly, the holy-grail of resource disaggregation is the
pooling of main system memory, due to the stringent latency
and bandwidth requirements of accesses to the main memory
of the system. Additionally, from the System-on-Chip (SoC)
main bus standpoint, every peripheral is memory-mapped
(even if through a PCle root complex bridge), and communi-
cates with the rest of the integrated components with specific
load and store transactions of the bus-architecture. Therefore,
the disaggregation of the main system memory paves the



way for the hardware-level disaggregation of tightly integrated
accelerators (like high-end GPUs) and co-processors.

Prior lines of research and recent commercial efforts in-
troduce the memory disaggregation paradigm at the level
of the operating system [3], [4], [5], [6], [7], [8]. The
common mechanism that underpins all these approaches is
the over-subscription of remote memory resources, that is
combined with an OS trap, namely a page-fault. Even though
the proposed mechanisms can take advantage of the fastest
interconnect available, such as RDMA over Infiniband, there
are still major concerns such as memory thrashing and host
network stack over-subscription.

In this paper we introduce ThymesisFlow, a software-
defined - HW/SW co-designed datapath for materializing
disaggregated memory. The design of ThymesisFlow addresses
the key challenges of hardware-level disaggregation, and incor-
porates state-of-the art components into a full stack prototype
enabling the evaluation of real workloads running on top
of the IBM POWERY [9] AC922 (the base platform of
Summit supercomputer [10]). Taking into account emerging
specifications like Gen-Z [11] that aim to provide a disag-
gregated I/O fabric, and building on top of the latest cache-
coherent attachment technology for off-chip peripherals like
OpenCAPI [12], NVLink2 [13] and the developing CXL [14]
standard, ThymesisFlow design provides a high-performing
all-hardware disaggregated memory solution.

There are many open research questions related to a fully
hardware disaggregated system [15] for the cloud that are
out of the scope of this paper. In this work, we focus
on the feasibility of a memory disaggregated system, its
performance evaluation, and valuable projections regarding
scaling the size of our prototype and network infrastructure
towards a production-grade disaggregated system. The main
contributions of this paper are the following:

o Full hardware memory disaggregation prototype, with
a software-defined out-of-band control plane and
100Gbit/sec network facing signaling.

Run-time attachment/detachment of byte-addressable dis-
aggregated memory to a running Linux Kernel exploiting
dynamically created NUMA nodes to host the remote
memory.

End-to-end performance evaluation of the effects of mem-
ory disaggregation on a mix of real-world applications
representative of typical cloud workloads.

Discussion of the implications at the network level and
scale of a real deployment of memory disaggregated
system.

To the best of our knowledge, this is the first time a dis-
aggregated architecture has been prototyped on commercially
available hardware, and the first experimental evaluation of
hardware-level memory disaggregation for real-world work-
loads on a complete software and hardware stack.

II. MOTIVATION

One of the crucial factors, that cloud providers target to
minimize, is total cost of ownership (TCO). Unlocking phys-
ical resource proportionality by disaggregating the compute
and memory resources, results in workload defragmentation,
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Fig. 1. Data-centre utilization using the Google Cluster Data Traces [16] for
the conventional vs. disaggregated data-centre models. [left] Average resource
fragmentation index (lower is better) [right] Average amount of resources that
can be switched off (higher is better).

improved resource utilization and, consequently, significant
TCO reduction of a data-centre infrastructure.

To quantify the benefits of computational resources disag-
gregation, we developed a custom tool that consumes entries
from the publicly available Google ClusterData [16] trace
and simulates resource allocation/deallocation requests for
two data-centre infrastructures, namely a disaggregated and
a traditional (“fixed”) one. The “fixed” data-centre model
comprises of 12555 servers, matching the configuration of
the Google trace. Similarly, the disaggregated data-centre is
modeled as a set of compute and memory modules such
that in total it offers the same amount of resources as in
the “fixed” case; specifically, we model 12555 compute and
12555 memory modules, with the total available memory
spread evenly among the latter. Also, the disaggregated model
assumes that each module connects to the data-centre inter-
connect via 16 links (modeling parallel transceivers), and that
a fully connected topology enables any permutation of point-
to-point connections between compute and memory modules.
Both models employ a resource scheduler that uses an online
best-fit allocation policy without resource overcommitment.

Using the aforementioned setup, we issued the workload
allocation requests of the ClusterData trace for both data-
centre models and we measured their respective level of
resource fragmentation. This metric corresponds to the
number of resources that must be kept powered on, even if
they are not utilized by the scheduled workload (partially
allocated hardware units). As shown in Fig. 1, for the “fixed”
model, the fragmentation index is at 16% for CPUs and
29.5% for memory. However, for the disaggregated model
there is a significant reduction compared to the “fixed” model
(3.86% and 9.2% for CPUs and memory, respectively). As
for potential energy saving, an average of 1% of servers
is completely unused, and thus could be switched off, for
the “fixed” model. The disaggregated model allows the
scheduler to shut down 8% and 27% of the total number
of the compute and memory modules, respectively. These
quantitative findings are testimony to the promise brought by
disaggregation as utilization and operational expense savings
booster, largely forming the motivation of the present work.

III. RELATED ART

The idea of improving data-centre utilization via re-
source pooling and composable/disaggregated infrastructures



has been extensively explored in the literature. Some previous
work have addressed general concerns around disaggrega-
tion such as: what is the scale that disaggregation makes
sense; what is the best network technology to sustain a
fully disaggregated system [15]. Some more recent work has
explored operating systems aspects [17], and the possibility of
a composable system where accelerators are remotely attached
to machines via custom PCI switches [18], demonstrating
that the same workloads mix could be served with a lower
number of physical accelerators that are dynamically assigned
to applications. Finally, the authors in [19] evaluate disag-
gregated memory with a SparkSQL workload, showing that
— throughput-wise — memory disaggregation can be feasible
even with conventional 40Gbps interconnects.

Breaking the monolithic design of data-centres to decou-
ple arbitrary workload sizes from static server configuration,
and enabling component-independent technology refreshes has
been one of the missions of the Open Compute Project
[20]. Notable demonstrators and prototype concepts include
the Intel Rack Scale Design [21], Facebook “Group Hug”
and “Yosemite” server designs, as well as production-grade
specialized kernels and platform orchestration software for
virtual machines operating on pooled servers, such as Liqid
[22]. Similarly, the HPE “The Machine” [23] prototype show-
cases SoCs accessing remote memory via specialized bridging
controllers and fabric (e.g., Gen-Z [11]). Our work shares
common objectives with and can act complementarily to
such and related designs; the unique ambition and the main
differentiation point of our proposal stands in its ability to offer
disaggregated memory access dynamically and transparently
to unmodified application binaries, whose feasibility is proven
by a hardware prototype.

Shared memory clusters have similar challenges and some
of the technical and business objectives of disaggregated data-
centres. Distributed shared-memory machines like NumaS-
cale [24] or SGI UV [25] target parallel and distributed
applications that require deployment on a large number of
tightly cooperating cores; they typically build on distributed
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cache coherency protocols to turn underlying island domains
into a single cache-coherent shared-memory machine. This
approach trades flexibility at the cost of scalability because
maintaining coherency becomes harder as the number of
domains increases [26]. In contrast, our work targets typical
cloud data-centre workloads where applications are developed
to leverage socket-level (e.g., shared-nothing) parallelism and
to make heavy use of in-memory computing, without tangible
benefits from a shared memory scheme.

Looking at the core technology enabling memory disaggre-
gation, previous approaches in the literature can be clustered
in two main categories [27]: i) software-based, referred to in
this paper as “remote memory” and ii) hardware based, herein
referred to as “memory disaggregation”.

Previous work on software remote memory often involves
heavy modifications to core components of the OS (e.g.,
memory subsystem), and forces application to use custom
libraries to gain access to the extended memory (e.g., page
swap devices, RDMA transfers). Hotpot [5], Infiniswap [6]
and the work by Lim et al. [28] all pursue the goal of memory
disaggregation via a page-fault / swapping based approach.
Compared to the above, our solution provides applications
with transparent access to disaggregated memory in the form
of raw byte-addressable memory (1d/ st semantics). Existing
applications and operating systems can directly benefit from
our solution, without the need for modifications, custom
middleware or intrusive OS extensions (e.g., swap and page
fault -based data fetching). Furthermore, our approach uses
a dedicated network to avoid impacting the main network
latency with the traffic generated by memory disaggregation
[29].

In the scope of hardware memory disaggregation, most
of the approaches propose a combination of OS and micro-
architectural extensions [30], devise extended addressing mod-
els embedding disaggregation information directly in the phys-
ical address [31], and often leverage dedicated programming
models [32]. Our work does in part build upon ideas from the
above efforts, e.g., by offering access to disaggregated memory
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Fig. 2. ThymesisFlow overall architecture.

870



at load/store instruction granularity, similar to [30], [31]. Still,
there are three key factors that strongly differentiate the present
work: a) our approach does not require intrusive changes to the
OS or dedicated programming models and is fully transparent
to applications; b) this work presents results obtained on a
real disaggregated memory prototype built on off-the-shelf
hardware; c) we offer a complementary fresh look on full-
fledged applications that are trending in cloud and hyperscale
systems, while previous work is mostly focusing on multi-core
application kernels [31].

IV. ARCHITECTURE

Delivering an efficient hardware disaggregated memory
system introduces several architectural challenges that need to
be addressed, such as: i) appropriate interception of memory
transactions, address translation and forwarding to the various
remote destinations, ii) accurate design of the memory trans-
action routing scheme, the network interface and the topology
for remote memory access; iii) seamless OS-level support for
runtime attachment and detachment of disaggregated memory
sections, and iv) support for software-based management of
the disaggregated memory pool, including global state book-
keeping and allocation policies.

A. Hardware Interconnect Architecture

The ThymesisFlow hardware interconnect architecture
(Fig. 2) features two different endpoint roles: i) compute role
— this is the endpoint that introduces remote memory to a
physical address space range on a host system (the recipient);
ii) memory-stealing role — reserves a portion of the local
memory on the host system (the memory donor) which is
exposed, as disaggregated memory, to a neighbour host.

ThymesisFlow embraces the OpenCAPI [12] cache-
coherent attachment technology, that is available today on IBM
POWERY processors, to both intercept memory transaction
traffic and materialize the endpoint functionality.

The OpenCAPI specification allows off-chip peripherals to
behave either as memory controller receiving cacheline traffic
generated from the SoC processors ( OpenCAPI M1 mode)
or, as an accelerator that can directly master cache-coherent
transactions to the virtual address space of an associated
application. In the latter case, transactions are completed
without the intervention of host processors or any DMA
engine (OpenCAPI C1 mode). The ThymesisFlow compute

and memory-stealing roles leverage the OpenCAPI M1 and
C1 modes, respectively.

1) Compute endpoint: The disaggregated memory exposed
via the ThymesisFlow compute endpoint is perceived as regu-
lar system memory. More specifically, the POWERY firmware
assigns at runtime a portion of the host real address space (i.e.,
physical address space) to the compute endpoint. Each trans-
action address is subject to a series of transformations before it
can be forwarded to the memory-stealing endpoint, as depicted
in Fig. 3. An effective address emitted at the compute side is
first translated into a real address by the processor MMU.
The real address is received by the ThymesisFlow device in
its internal representation (the Device Internal Address Space
is always starting from address 0x0). The internal address is
finally translated into a valid effective address that can be
emitted into the memory-stealing endpoint system bus. This
translation task is undertaken by the ThymesisFlow Remote
Memory Management Unit (RMMU) which is integrated into
the compute endpoint.

The RMMU is designed to be used in conjunction with
Linux kernel sparse memory model [33]. In this approach,
the Linux kernel divides the physical address space assigned
to the main system memory, into fixed-size aligned sections.
Each memory section is independently handled by the kernel,
and can be “hotplugged” at runtime to expand the available
system memory. Similarly, the ThymesisFlow RMMU features
a section table with one entry per section that contains: a) the
address offset that must be applied to convert the transaction
address from the internal device representation to the effective
address of the memory-stealing counterpart and b) a network
identifier that is added in the transaction header and is used
by the routing layer. A specific bit range of the transaction
address, common to all transactions belonging to the same
section, serves as the table index.

The one-to-one mapping between Linux kernel sparse mem-
ory model and the ThymesisFlow RMMU configuration, de-
fines the section as the minimum unit of disaggregated mem-
ory that can be independently handled. Each section is required
to be associated to a consecutive effective address space of
the same size at the memory-stealing side, guaranteeing that
transactions belonging to the same section receive the same
network forwarding information. The architecture logically
groups all transactions (and their responses) in-transit between
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Fig. 3. ThymesisFlow address translation process.
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a given compute and memory-stealing endpoint, and belonging
to a specific section, as an active thymesisflow. Each active
thymesisflow is associated with a unique network identifier.
Finally, when a memory access transaction exits the RMMU
of the compute endpoint, it has undergone all the modifications
that are required to be mastered at the remote memory-stealing
endpoint.

2) Memory-stealing endpoint: The memory-stealing end-
point enables access to the machine effective memory space
from a remote compute node. A memory-stealing process
allocates and pins to system memory the amount of cacheline-
aligned memory requested by the remote node. The stealing
process allows ThymesisFlow to access the memory reserved
by registering its Process Addres Space ID (PASID) [34] with
the memory-stealing endpoint hardware. The pointer (effective
address) to the memory reserved is passed to the orchestration
layer that calculates the proper offsets to be applied by the
compute endpoint RMMU. At this point, the memory-stealing
endpoint is passive and does not require further configuration:
it does not modify the transactions, and does not need to re-
ceive any network information. The memory-stealing endpoint
responds to transactions using the channel they arrived from,
and the network identifiers that were already embedded in the
arriving transaction headers.

3) Routing Layer: Right after the endpoint attachment
module (Fig. 2), the ThymesisFlow stack features a routing
layer to forward transactions towards remote endpoints. Each
transaction is handled independently, based on the network
information that is included in the header (added by the
RMMU), and therefore the ThymesisFlow architecture allows
any number of endpoints to be concurrently connected. In
addition, the ThymesisFlow routing layer implements channel
bonding: transactions belonging to an active thymesisflow can
be forwarded using two or more physical network channels in
a round-robin fashion. The bonding mode is enabled in-band
by appropriate transaction header network identifiers on a per
active thymesisflow basis. A network channel may be shared
concurrently between different active thymesisflows regardless
if one or more of them are using the channel in bonding mode.
This approach enables the investigation of more sophisticated
channel sharing approaches that go beyond simple round-
robin, and will be able to offer bandwidth allocation and QoS
capabilities.

4) Network facing stack: ThymesisFlow provides a reliable
network facing channel by introducing a Link-Layer Control
(LLC) protocol that implements the following features: i)
backpressure support using a credit-based mechanism to pro-
tect Rx side from overflowing, and ii) frame replay support in-
troducing a reliability scheme where a sequence of previously
transmitted frames can be replayed in-order by the Tx side,
upon request of the Rx side. ThymesisFlow LLC endpoints
exchange credits by piggy-backing them on the transaction
headers of requests and responses. Each credit represents an
empty slot at the Rx ingress queue. The depth of the Rx
ingress queues has been carefully calculated to avoid credits
starvation at the Tx side. ThymesisFlow LLC frame replay
is based on a custom framing scheme. All transactions from
active thymesisflows that reach the LLC layer of a network
channel are grouped in frames composed of a pre-defined
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number of flits. Incomplete frames are padded with single-flit
nop transaction headers for immediate transmission, to avoid
waiting for additional transaction flits to arrive. In addition,
special single-flit frames are used as in-band messages to
transfer replay requests to the Tx side. During link bring-up,
the ThymesisFlow LLC Tx side agrees on a starting frame
identifier with the Rx side and begins the in-order transmission
of frames, incrementing the frame identifier accordingly after
the transmission of each frame. If a frame is not received,
or is received in error, the design triggers a frame sequence
replay by exchanging appropriate in-band messages between
the involved endpoints.

The ThymesisFlow LLC design features a 32B wide data-
path which drives four datalink-layer bonded network facing
transceivers. Notably, the LLC design does not impose any
dependencies on the network MAC. Consequently, both a
packet network (e.g. 100G Ethernet or EDR Infiniband) or
circuit-based bit-for-bit network MAC can be used.

B. Operating System Support

The ThymesisFlow configuration space is exposed to the
Linux operating system as a memory mapped I/O (MMIO)
area, using the OpenCAPI generic device driver (Fig. 2).

A user-space agent runs as a daemon on every host, to
issue the appropriate configuration commands received from
the orchestration layer. The role of the user-space agent is
twofold: i) configure the compute endpoint by performing
the necessary operations required for physical and logical
attachment of disaggregated memory or, ii) allocate local
host memory and make it available to the memory-stealing
endpoint. The logical attachment of disaggregated memory to
a running Linux kernel is performed using the Linux memory
hotplug [35] functionality, which was originally designed to
plug and unplug local physical memory modules to and from
conventional servers. The only information needed to hotplug
a memory section is its start address in the physical address
space where the compute endpoint is mapped. The orchestra-
tion software, aware of the global allocation mappings, passes
this information to the agent, which uses the memory hotplug
subsystem to probe and online the new memory.

At hotplug time, each disaggregated memory section is
mapped to a CPU-less NUMA node [36], reflecting the re-
spective transaction RTT delay between compute and memory-
stealing endpoints. Thanks to this support, the kernel can op-
timize the access to frequently used memory areas by reusing
existing NUMA page migration algorithms that move pages
from distant to closer (including local) memory nodes [37].

C. Control plane

The control plane implements the software-defined mecha-
nisms that allow dynamic attachment of disaggregated memory
to the compute nodes in the system (Fig. 2). The main respon-
sibilities of the ThymesisFlow control plane are: i) system state
maintenance, ii) configuration of ThymesisFlow endpoints
and possible intermediate switching layers, iii) system access
interface, and iv) security and access control.

The system state is modeled as an undirected graph whose
nodes are compute and memory endpoints, transceivers as-
sociated with each endpoint and switch ports. The edges of



the graph are instead the possible physical links between
nodes. For each disaggregated memory allocation request,
the control plane traverses the graph looking for the best
available path connecting the compute and memory stealing
endpoints involved. Once a suitable path is found and its
resources are reserved, the control plane generates the suitable
configurations and pushes them to the appropriate agents. We
use Janusgraph [38], a distributed graph database, as the
backend to the ThymesisFlow control plane.

The various remote memory allocation/deallocation inter-
actions occur via a REST APIL. An access control system
ensures that only users with enough privileges can act on
the system status. This interface can be used directly by
administrators to build ad-hoc computing platforms. As part
of the future work we plan to integrate this interface with
existing cloud orchestration frameworks such as OpenStack
[39] or Kubernetes [40], to implement transparent resource
allocation based on incoming VM or containers instantiation
requests.

Finally, the control plane guarantees safe distribution of
remote memory resources. This is enforced by using com-
pute endpoint configurations allowing memory transactions
forwarding only towards legal destinations, and fail otherwise.
To make sure no malicious software can push illegal config-
urations, trusted node agents and network elements firmware
accept configuration updates only from a trusted control plane.

V. SYSTEM PROTOTYPE

ThymesisFlow is a fully functional prototype and imple-
mentation of the hardware, OS and orchestration software
architecture presented in Section IV, and has been developed
on top of the OpenCAPI [12] FPGA stack available for
IBM POWEROI[9]. ThymesisFlow hardware datapath is tightly
designed in Verilog. The experimental prototype is composed
of three IBM Power System AC922 nodes [41]. Each node
features a dual socket POWERY CPU (32 physical cores and
128 parallel hardware threads) and 512GB of ram. Two of the
nodes are equipped with an Alpha Data 9V3 card [42] that fea-
tures a Xilinx Ultrascale FPGA. The ThymesisFlow datapath
leverages one OpenCAPI FPGA stack instance that interfaces
a POWERY processor at 200Gbit/sec by bonding 8z GTY
transceivers at 25Gbit/sec. For the network, the prototype
is using Xilinx Aurora protocol [43] that provides a low-
latency and basic framing datalink layer with CRC support.
The aurora-based network-facing pipelines are organized in
two totally independent channels, each one driving 4z bonded
GTY transceivers at 25Gbit/sec (100Gbit/sec). Therefore,
the ThymesisFlow design features three mesochronous clock
domains (one for each transceiver group) that all run at
401Mhz.

The network facing QSFP28 cages are connected with
direct attached cables to provide point-to-point and point-
to-multipoint configurations. The hardware datapath flit RTT
latency of this prototype is roughly 950ns which includes four
crossings of the FPGA stack and six serDES crossings (2x at
compute endpoint side, two for the network and two at the
memory stealing endpoint side).

On the software side, all systems run Linux kernel version
5.0.0 with memory hotplug [44] and NUMA extensions, as
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described in Section IV-B. Last but not least, the Thymesis-
Flow hardware design and relevant software are all available
under the OpenPower [45] initiative to the opensource com-
munity [46] to accelerate research on hardware-level disaggre-
gation.

VI. EVALUATION

We evaluate the ThymesisFlow prototype and analyze the
impact of disaggregated memory by measuring the end-to-
end performance of various cloud applications. In the rest of
this section, we present the experimental setup, discuss our
evaluation methods, and present our results.

A. Experimental setup

Our evaluation was performed using the three servers de-
scribed in Section V. The two nodes featuring an FPGA,
provide the memory disaggregation capabilities and run the
server-side of the applications under evaluation. The third node
executes the respective clients of the applications.

In our evaluation we have investigated four different system
configurations, as shown in Fig. 4: i) local: all memory
requests are served locally on the same node where the appli-
cation server is running (Fig. 4(a)); ii) single-disaggregated:
all memory needs of the application server are satisfied
by memory stolen from the neighbour node, and only one
ThymesisFlow network channel (100Gb/s) is used (Fig. 4(b));
iii) bonding-disaggregated: similar to single-disaggregated but
both ThymesisFlow network channels (200Gb/s) are used
(Fig. 4(b)); iv) interleaved: memory pages are allocated on
both local and disaggregated memory following a round-robin
policy (Fig. 4(c)); v) scale-out: this is the traditional, widely-
adopted, approach to scale cloud applications. In contrast to
the previous configurations, the application server is scaled on
the two available nodes and memory allocations are always lo-
cal to the nodes (Fig. 4(d)). Note that, while the total amount of
memory remains unchanged in all the configurations evaluated,
when comparing disaggregation vs scale-out, the disaggregated
configuration has half the number of CPU cores available
compared to the scale-out.

Moreover, for the scale-out configuration, the two “server”
nodes are connected with each other via 100Gb/s Ethernet.
For the remaining configurations the “server” nodes are con-
nected through ThymesisFlow (copper cables) at 100Gb/s,
or 200Gb/s in the case of bonding-disaggregated. Also, the
“client” machine is connected to the “server” machines via
10Gb/s Ethernet, for all configurations.

B. Application selection

For each of the previously described system configurations,
we have performed a double set of experiments targeting both
the raw memory bandwidth achievable with our prototype,
as well as the evaluation of three application classes that
we deem to be representative of the large variety of cloud
workloads executed today. All applications selected are free
and open-source, and occupy a large-enough area on the
resource proportionality continuum (i.e., exhibiting a large
heterogeneity in terms of memory/CPU/IO usage ratios).
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e Sustainable memory bandwidth. We evaluate Thymes-
isFlow bare performance using the STREAM bench-
mark [47], the de facto industry standard to measure
sustainable memory bandwidth and overall processing
balance, as perceived by user space applications.

o In-memory database. They are widely adopted, for exam-
ple, in on-line commercial systems. We use the NewSQL
VoltDB in-memory database [48] (v6.5.8 - community
edition) to evaluate this class of cloud applications.

o In-memory application-level caching. Application caches
are widely deployed in data-centres to speed up key-based
data retrieval, e.g., in Web applications as a layer in front
of relational databases. We evaluate Memcached [49]
(v1.5.20) as a frequently used representative of this
application class.

e Data analytics. With this term we refer to the large
class of applications that execute complex queries over
large data bases [50]. A common characteristic of these
workloads is a marked presence of I/O activity (mostly
cpu-based). We chose the Elasticsearch [51] (v7.4.1) to
study this category.

C. Sustainable memory bandwidth

We configured STREAM to use 160 million array elements,
requiring a total memory of 3.66 GiB, which is well beyond
the system cache size. Each benchmark run executes four
kernels, i.e., “copy”, “scale”, “add” and “triad” [47]. Specif-
ically, “copy” reads/writes 16 bytes (1 read, 1 write ops) of
memory per iteration, performing no floating point operations
(FLOPs); “scale” reads/writes the same amount of memory
with the same number of operations but it performs 1 FLOP
per iteration; “add” accesses 24 bytes of memory (2 read
and 1 write ops) and executes 1 FLOP per iteration; finally,
“triad” accesses 24 bytes of memory (2 read and 1 write ops)
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executing 2 FLOPs per iteration. Using the OpenMP support
built-in on STREAM, we confine the benchmarks to run on 4,
8, and 16 hardware threads. Leveraging the local and remote
NUMA domains, we repeat the same executions using all the
configurations depicted in Fig. 4.

Fig. 5 shows the results of our evaluation, in terms of
sustained memory bandwidth (GiB/s), for each system config-
uration as clustered bars. For the “copy” kernel, we observe
that with 4 threads the single-disaggregated configuration can
achieve ~ 10 GiB/s bandwidth towards disaggregated mem-
ory, reaching close to the theoretical maximum of 12.5GiB/s
when using 8 threads. As we increase concurrency, in terms
of threads number, performance decreases because the net-
work facing stack gets closer to the saturation threshold, as
the ThymesisFlow network is already operating at its peak
(100Gib/s). That said, instinctively, someone would expect the
bonding-disaggregated configuration to deliver approximately
2x the performance of the single-disaggregated. However, this
is not the case, because the OpenCAPI mode C1 used for the
memory side of our prototype works with 128B transactions,
and can exploit a relatively small burst size. This leads to a

8
1stlevel: kemel
2nd level: threads
= bhonding-disaggregated mmmmm single-disaggregated
mmmm interleaved oeeeeer local memory (>100 GiB/s)
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Fig. 5. STREAM benchmark performance comparison.



maximum actual bandwidth to/from memory in the range of
16GiB/s, which is in line with the ~ 15GiB/s obtained with
bonding-disaggregated for the “copy” benchmarks running
with 8 threads. Notably, the OpenCAPI C1 mode has been
measured to achieve 20GiB/s by leveraging 256B memory
transactions, which cannot be used in the current Thymes-
isFlow design as the POWER9 processor is only issuing
128B wide 1d/st transactions (cache line size). After an initial
analysis, we have assessed that merging 128B transactions (at
both the compute or memory endpoint) into 256B ones would
greatly increase the complexity of our design. Consequently,
the benefits from using bigger data bursts would be minimized.
Overall we measure a ~ 30% improvement for the bonding-
disaggregation configuration.

Notably, the interleaved configuration is outperforming all
the other configurations. In this configuration, the Linux kernel
is alternating on a 50/50 basis pages from the two NUMA
nodes. This results in 50% of local and 50% disaggregated
allocations of memory pages. Such synergy of local and
disaggregated memory mitigates the higher access latency of
disaggregated memory and provides a solid hint on what to
expect from a real application, where the mix of CPU and
memory instructions is more complex and cache locality is
better exploited. These effects are not visible with STREAM
because it is a memory intensive benchmark, where at each
iteration of the kernels there are always more memory than
CPU instructions.

Even though these results highlight the huge difference
in bandwidth between local and disaggregated memory, they
also show how a synergistic approach can dramatically maxi-
mize memory bandwidth. This experiment also confirms that
ThymesisFlow pipelined design and OpenCAPI FPGA stack
are capable of exploiting almost the whole bandwidth available
between the nodes, as well as between FPGA and CPU.

In addition, STREAM is designed for measuring sustained
memory bandwidth and does not contain the mix of CPU,
I/0O and memory instructions that can be observed in a real
application. In the next sections we show how the performance
of our ThymesisFlow prototype is appealing for real cloud

applications where internal and network-based synchronization
barriers exist and take their toll at the delivered performance.

D. In-memory database

VoltDB[48] is an in-memory and fully ACID-compliant
(Atomicity, Consistency, Isolation, Durability) RDBMS. More
specifically, VoltDB is based on H-Store [52] and is designed
as a share-nothing architecture. Such a design pattern, allows
VoltDB to offer built-in support for horizontal scaling and
multi-node deployments. VoltDB splits data, SQL tables in this
case, into partitions and assigns their corresponding processing
to individual threads. Consequently, the data partitions can
be distributed across different CPU cores or even exceed the
physical boundaries of a node and form a multi-node cluster.

For this evaluation, we used the Yahoo! Cloud Serving
Benchmark (YCSB) [53] suite to extract the performance of
VoItDB for all the experimental configurations presented in
Section VI-A. YCSB is a workload generator client targeting
benchmarking of data serving systems via six different work-
loads, namely A. B, C, D, E and F. The YCSB workloads
can be divided into two groups: i) Read intensive: workloads
with > 95% read transactions. This is the case of workloads
B, C, D and E ii) Mixed: all the transactions generated by
each client are split in 50% reads and 50% other transactions
(e.g., updates). This is the case for workloads A and F. The
reader is referred to the YCSB documentation for a detailed
description of all the available workloads [54].

To better understand the behavior of VoltDB for different
number of partitions — more partitions translate to an increase
in parallelism — we profiled VoltDB for all YCSB workloads
with 2000 YCSB client threads. All the results are collected
using Linux perf tools [55]. More specifically, Fig. 6 shows
the average retired Instructions per Cycle (IPC) across the
whole CPU package and the average number of utilized CPU
cores (UCC) for the VoltDB process. This experiment was
repeated for all YCSB workloads, with the local and the
single-disaggregated setups.

The average UCC is based on the task-clock perf event that
reports how parallel each task is, by counting how many CPU

Fig. 6. VoltDB profiling for all YCSB workloads under various number of data partitions. The lines with circle markers show the IPC, while the lines with

square markers show the UCC.

1st level: VoltDB partitions
2nd level: YCSB workload
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cores were utilized during its execution. For the estimation
of the average IPC across the whole CPU package, we used
the instructions and cycles perf events. The instructions perf
event reports the amount of retired instructions, while cycles
reports the number of CPU cycles. The single-thread IPC of
the VoltDB process is obtained by dividing instructions by
the value of cycles. Finally, the average IPC across the whole
CPU package is obtained multiplying the single-thread IPC by
the average UCC. During our experiments, we also capture the
stalled-cycles-frontend and stalled-cycles-backend perf events,
to provide extra information about the reported IPC of our
profiling campaign.

Interestingly, for the local configuration (Fig. 6) we observe
that increasing the number of partitions and, thus, scaling
VolItDB horizontally, results in an increased IPC for workloads
that are not dominated by READ operations, such as workload
A and F. However, the biggest improvement is observed when
we increase the number of data partitions from 4 to 16.
For higher partition numbers, the IPC gains remain relatively
small. On the other hand, when READ or SCAN operations
dominate the workload, such as workload B, C, D, and E, the
horizontal scaling of VoltDB does not significantly increase
the IPC. To further investigate this behavior we measured
the network bandwidth utilization between the YCSB client
and the VoltDB host system, and we found that the network
was not saturated. Also, we lowered the number of YCSB
client threads from 2000 to 500, and VoltDB exhibits the same
behavior.

On the other hand, for the disaggregated memory setup
(Fig. 6) , we observe higher IPC and higher UCC when
increasing the number of VoltDB data partitions. In light of
the data collected this effect is to be associated with the higher
latency of disaggregated memory accesses that is relaxing
the synchronization between threads across different data
partitions. This results in a lower number of threads yielding
the CPU while synchronizing and thus, into a higher average
UCC. However, the increased latency in the single-remote
has a negative impact on the IPC measured. In particular,
for low partition numbers, such as 4, we observe that this
latency heavily penalizes the IPC, because the synchronization
overhead, mentioned above, is relatively smaller compared to
the latency of the disaggregated memory.

However, for higher partition numbers (16 or more), we
see that the IPC of the disaggregated setup increases but
remains lower compared to the local memory configuration.
This is also proven by the increased number of CPU back-end
stalls measured in the single-remote configuration. A back-
end stall happens when the pipe-line is waiting for resources
(e.g., memory) or for a long latency instruction to complete.
Overall we have measured that, for the local configuration,
on average 55.5% of cycles resulted in a back-end stall. This
number raises to 80.9% in the single-remote configuration.
The above analysis shows the effect of memory disaggregation
from an architectural standpoint, that for space reasons will not
be presented for the other applications studied in this paper.
However, the main goal of this work remains to evaluate the
impact of disaggregated memory on applications performance.
In other words, measuring how and if applications perfor-
mance metrics (e.g., as throughput or transactions latency) are
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Fig. 7. YCSB workloads A and E throughput for all experimental setups
(Section VI-A) under various number of data partitions.

being affected from disaggregated memory accesses.

Based on the similarity of YCSB workloads, in terms of IPC
(Fig. 6) and due to space limitations, we present the application
performance results only for workloads A and E for 4 and
32 VoltDB data partitions. More specifically, Fig. 7 shows
the respective throughput, as reported by the YCSB client,
for all the experimental setups presented in Section VI-A.
Initially, we observe, that when running with 4 VoltDB
data partitions all configurations using our ThymesisFlow
prototype (i.e., single-disaggregated, bonding-disaggregated,
interleaved) have a performance in terms of throughput that
is significantly lower than the local and scale-out configura-
tions. This is because of the aforementioned latency impact,
introduced by our architecture, and the contention between the
VoltDB data partitions.

In general, and as expected, the local configurations
exhibits the best performance regardless of the workload
and number of partitions. For workload A, all the remaining
configurations such as scale-out, interleaved, single- and
bonding-disaggregated are slower by 5.95%, 5.62%, 7.97%,
10.03%, respectively. The scale-out configuration is the
second-fastest setup, as half of the VoltDB memory is
allocated locally, on the host system, and the other half is
stolen from a remote node. Interestingly, the performance of
scale-out, single-remote and bonding-remote configurations
remain similar, as the overhead of both local and network
synchronization across data partitions for the scale-out setup is
comparable to the latency of disaggregated memory accesses.
Furthermore, for workload E, we observe that throughput
is similar for all configurations, as the vast number of
READ operations saturate the performance of VoltDB.
However, the configurations that utilize our ThymesisFlow
prototype have a similar performance with local and scale-
out configurations. Notably, the interleaved, single-remote
and bonding-remote use half computing resources (CPU)
compared to the scale-out configuration. This is a solid
indication that, for some applications, our architecture can
replace the traditional scaled-out approach, while delivering a
comparable performance with a reduced computing resources
footprint.

E. In-memory application-level caching

We have chosen Memcached [49] as representative for this
applications category since it is well known and widely used



in real cloud deployments. Memcached is an application-level
in-memory cache exposing a simple TCP (or UDP) interface
that allows to load (GET) or store (SET) key-value pairs.
Typically, in-memory caches exhibit limited CPU utilization
while performing many small read-only memory accesses.

To evaluate the performance of Memcached, we used the
statistical models, of prior work [56], for the “ETC” traces
and we developed a realistic load generator. To this end,
these models are based on a comprehensive characterization
of Memcached workloads in Facebook data-centres.

At startup time, the load generator “warms-up” Memcached
by generating a number of SET requests that are large enough
to fill the cache up to a configurable total size (10 GiB in these
experiments). After the warm-up phase has ended, the load
generator spawns 64 threads that act as Memcached clients
posting GET/SET requests with a ratio of 30 : 1 [56]. The key
for each request is chosen from the key-space according to
a Zipf distribution with configurable exponent, following the
observations in [57]. The load generator records individual
response latencies for each request and stops after each thread
has issued 1 million requests. The key-value space size is 15
GiB and the Zipf exponent is set to 1.0. With this setup, we
obtain an average hit ratio varying from 80% to 82%, close
to the 81% value reported in [56].

Fig. 8 shows the cumulative distribution of measured
GET requests latency for all the configurations described in
Section VI-A. Results for SET requests follow the same trends,
and are not shown due to space limitations.

From our evaluation, the local configuration presents the
best performance with an average response latency of 600us.
This setup offers also the higher level of consistency with 90%
of all requests served with only 19% degradation compared
to the average latency. In average interleaved, single- and
bonding-disaggregated configurations present similar response
latency of respectively 614, 635 and 650us. However, we
register a higher level of latency degradation amounting to
respectively 33%, 34% and 64% when serving 90% of all
requests. For the scale-out configuration, we employ Twem-
proxy [58]; a proxy for the Memcached servers. Twemproxy
supports the Memcached communication protocol and targets
to reduce the number of open connections to the cache
servers. Moreover, by employing a proxy, we simulate an
environment, matching the one found in a typical data-centre,
where the internal network of servers is not exposed to the
various clients. Given the increased number of hops required
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to reach the service because of the proxy, scale-out registers
an increased average latency of 713us with up-to 2x latency
degradation when considering 90% of the requests.

Our results show that the configurations that utilize our
ThymesisFlow prototype, offer similar performance to local
configuration with an average increase in latency of up-to
7%. This is because Memcached exhibits a remarkably cache-
friendly behavior [57], [56] due to the high spatial and tempo-
ral locality in its access patterns. The scale-out configuration
demonstrates how a memory demanding workload can highly
benefit from disaggregated memory. More specifically, for the
scale-out configuration, the cost of network synchronization
exceeds the cost of accessing a disaggregated memory and,
consequently, the scale-out configuration results in an increase
of transactions latency, 8% on average, and a much higher
variability.

F. Data analytics

Elasticsearch [59] is an open-source search and analytics
engine that supports multiple types of data such as textual,
numerical and structured. Moreover, Elasticsearch is an extra
layer, on top of Apache’s Lucene [60], that supports indexing
and automatic type guessing and utilizes a JSON-based REST
API to expose certain features. Through this API, Elasticsearch
can be instructed to perform several operations namely, search,
update, insert, etc.

Furthermore, Elasticsearch saves all the data in the form of
JSON-expressed documents. Documents with similar charac-
teristics are part of an Index collection. Elasticsearch provides
the ability to subdivide any Index into pieces, namely shards.
Each shard is a fully-functional and independent Index that can
be distributed across different cores of a CPU and even differ-
ent physical servers (nodes), forming a multi-node cluster of
Elasticsearch. However, on each node, despite the number of
shards, all operations queue up into the corresponding thread
pool based on their type. In particular, each Elasticsearch node
holds several dedicated thread pools for different operations,
that allow requests to be kept instead of being discarded.

In our evaluation we use ESRally which is an official
Elasticsearch benchmarking suite, offering multiple bench-
marking scenarios in the form of tracks. We have selected
the “nested” track, consisting of various operations in the
form of ‘“challenges”. The working dataset is a dump of
StackOverflow posts retrieved as of June 10, 2016. Moreover,
we experiment with various numbers of shards, such as 5,
32. Due to space limitations, in Fig. 9, we present only the
results of the following challenges: i) RTQ: searches for all
questions that feature a random generated tag; ii) RNQINBS:
searches for questions (similar to RTQ) that contain at least
100 answers before a random date; iii) RSTQ: searches for
questions (similar to RTQ) and sorts them in a descending
fashion according to their date; iv) MA: queries all questions.
Details of the remaining “nested” challenges can be found in
the official ESRally documentation [61].

As shown in Fig. 9, the performance of each configuration
strongly depends on the type of operations issued in each
challenge. More specifically, for the RTQ challenge and scale-
out configuration, Elasticsearch benefits from the extra com-
putational resources, in the form of extra shards, and outper-
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forms any other configuration, including /ocal. As expected,
in this case, all setups that utilise the ThymesisFlow proto-
type, such as interleaved, bonding-disaggregated and single-
disaggregated are slower by 58.33%, 42.65% and 75.65%,
respectively. Similarly, for the challenges that require tighter
synchronization across Elasticsearch shards (shards scaling re-
sults in a throughput degradation), such as RNQINBS, RSTQ,
and MA, we observe that the scale-out configuration out-
performs the interleaved, bonding-disaggregated and single-
disaggregated configurations by 17.95%, 41.26%, 60.61%
on average, respectively. However, for the MA challenge,
the configurations that utilise our architecture offer similar
performance with the local and scale-out ones. Our evaluation
of Elasticsearch shows that there are cases for which the
traditional scale-out approach clearly outperforms our design
but, depending on the workload, memory disaggregation still
offers appealing performance.

VII. CHALLENGES AND FUTURE WORK

While the ThymesisFlow FPGA-based prototype achieves
acceptable RTT latency that is below lus, there is a consid-
erable margin for improvement if the design was efficiently
integrated in the processor SoC. First, at the architecture-
level, the SoC transceivers could be driven by an appropriately
modified design to directly interface the network, rather than
the middle off-chip peripheral approach used in the current
design, which would save four serDES crossings. Second, if
ThymesisFlow was entirely implemented on an ASIC, several
steps like the Physical Coding Sublayer (PCS) of the serDES
stack would have considerably less impact on latency as
well. Apart from reducing the hardware datapath latency,
remote memory access experience can be further improved
both with Operating System level approaches that are currently
being investigated in the context of disaggregation, as well
as by the introduction of an appropriate caching layer at
the hardware-level (e.g. using HBM intermediate memory as
cache). Sustainable bandwidth is also a consideration but it
poses less challenges than latency and can be tackled (to a
certain extend) by simply adding more hardware. For example,
the IBM POWERSY processor has already four OpenCAPI
stacks that collectively provide 800Gbit/sec of bandwidth and
there are two such processors on the AC922 server.

Nevertheless, the network architecture poses the most im-
portant challenges, and with the currently available tech-
nologies, only rack-scale dissaggregation seems a feasible
solution (i.e. at most one switching layer) to maintain the RTT
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latency to appropriate levels. At the scale of one or a few
racks, a circuit switched optical network would be attractive.
This would guarantee enormous bandwidth and absence of
congestion. However, a circuit-switched network limits the
scalability of the whole infrastructure as it remains limited
by the number of ports available on each node, unless the
switch is rapidly re-configured at the scale of packets or flows
to serve another circuit on those ports. With a packet-based
network on the other hand, a node could access all other nodes
in the rack with no need for reconfiguration, although packet
networks come with congestion issues as network links are
shared between many connections. Many new technologies
are being developed that could improve the performance of
both solutions, such as all-optical switches at ns- or us-
scale [62], [63], [64], [65] and network interfaces at 200-
400Gb/s or beyond [66], [67]. For both optical and packet-
based networks, there is a tradeoff of application performance,
resource utilization and total cost of ownership (CAPEX and
OPEX). The authors recognize that scaling the rack and data-
centre interconnect is one of the main technical and economic
challenges in pursuing disaggregated systems and will proceed
to explore possible avenues in this space. The reader is referred
to previous work dedicated to this subject [68], [69], [70],
[29].

VIII. CONCLUSIONS

In this paper we have presented ThymesisFlow, a hardware-
level memory disaggregation prototype based on commer-
cially available, state-of-the-art hardware components. The
ThymesisFlow full stack approach attempts to strike a balance
between performance and software-defined control, including
the ability to synthesize and teardown logical servers at
runtime - the main promise of disaggregated resource pooling.
Evidently, hardware-level disaggregation comes with a per-
formance tradeoff that needs OS-level support to be further
minimized. However, we demonstrate that some important
cloud workloads exhibit already an acceptable performance.

As transceiver technology evolves to support higher data
rates and lower latency, the potential of hardware-level dis-
aggregation will be stronger and beyond memory scale-up,
to include the dynamic formation of CPU SMP domains and
the direct communication of cache coherently-attached remote
accelerators.
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