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Abstract—Deterministic execution for GPUs is a desirable
property as it helps with debuggability and reproducibility. It is
also important for safety regulations, as safety critical workloads
are starting to be deployed onto GPUs. Prior deterministic archi-
tectures, such as GPUDet, attempt to provide strong determinism
for all types of workloads, incurring significant performance
overheads due to the many restrictions that are required to satisfy
determinism. We observe that a class of reduction workloads, such
as graph applications and neural architecture search for machine
learning, do not require such severe restrictions to preserve
determinism. This motivates the design of our system, Deter-
ministic Atomic Buffering (DAB), which provides deterministic
execution with low area and performance overheads by focusing
solely on ordering atomic instructions instead of all memory
instructions. By scheduling atomic instructions deterministically
with atomic buffering, the results of atomic operations are
isolated initially and made visible in the future in a deterministic
order. This allows the GPU to execute deterministically in parallel
without having to serialize its threads for atomic operations as
opposed to GPUDet. Our simulation results show that, for atomic-
intensive applications, DAB performs 4× better than GPUDet
and incurs only a 23% slowdown on average compared to a
non-deterministic GPU architecture. We also characterize the
bottlenecks and provide insights for future optimizations.

Index Terms—GPU architecture, determinism, performance,
parallel programming

I. INTRODUCTION

GPUs are extensively used to accelerate parallel workloads,

such as machine learning [1], [2], [3] and graph workloads [4].

The utilization and adoption of machine learning and graph

applications are growing rapidly, reaching a wide variety of

areas such as autonomous agents [5], biomedical engineering,

physics, commerce, and finance.

However, the non-deterministic nature of multi-threaded

processors, such as GPUs, has become an issue in the field

of machine learning. The network models trained by non-

deterministic GPU architectures have non-trivial variance in

achieved accuracy, even if all other aspects are held constant.

Coupled with the long time periods required for training, GPU

non-determinism presents a major challenge. This is especially

important since the improvements in model accuracy often

range within 1-3% of the baseline, in part due to the effects

of non-deterministic GPUs. Reinforcement learning is also af-

fected by non-determinism, with GPU variance around 12% [6].

Safety critical applications that adopt machine learning models,

Fig. 1: Simplified non-deterministic reduction example: Base-

10, 3-digit precision, rounding up (details in Section III-B).

such as autonomous agents and medical diagnostics, require

reproducibility to ensure that systems meet specifications or

that experimental results can be replicated for verification [7],

[8]. The variance caused by GPU non-determinism also affects

graph applications, and can become problematic as graphs

are starting to be used in graph neural networks as well [3].

In addition to providing clean and reproducible experiments,

determinism can also improve debugging, e.g., if an algorithm

converges only sometimes on non-deterministic hardware,

determinism will allow us to accurately pinpoint the root cause

of the divergence.

Prior work attempted to provide deterministic execution

for multi-threaded CPU code [9], [10], [11], GPUs [12],

and more targeted solutions like reproducible floating-point

arithmetic [13]. CPU-focused solutions such as Kendo [9]

work well on a small number of threads but do not scale well

as they incur non-trivial thread serialization. GPU solutions

such as GPUDet [12] provide strong determinism for all types

of workloads by handling all memory instructions. However,

the generic deterministic architecture of GPUDet incurs high

performance overheads since it places many restrictions on

executions and threads are often required to stall or serialize.

Domain-specific solutions such as the work by Collange

et al. [13] focused on the reproducibility of floating point

atomics by proposing to enforce floating point ordering and to

use a wide accumulator to eliminate floating point rounding

errors [13]. However, these methods incur high performance

and area overheads, respectively.

In this work, we overcome these scalability and performance

challenges by focusing on GPU reduction workloads and

providing deterministic execution only for GPU atomic opera-

tions. Reduction workloads, although traditionally less common
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in general-purpose GPU (GPGPU) programs, have become

increasingly popular in recent years as machine learning

training and graph analytics workloads have targeted GPUs. For

example, libraries such as Nvidia’s cuDNN machine learning

library [14], and graph applications such as Betweenness

Centrality (BC) and PageRank, suffer from non-determinism

issues in practice [6], [15], [16], [17], [18], [19]. For these

workloads, there are several intertwined sources of non-

determinism. The unpredictable states of the memory hierarchy

and various heuristic-based GPU schedulers cause threads to

be scheduled in a non-deterministic manner, which affects

the order of operations. Coupled with non-associative floating

point operations, this can lead to different results from the

same program with the same inputs (Figure 1).

To overcome these issues we exploit the insight, much like

modern memory consistency models [20], [21], [22], [23], [24],

[25], [26], [27], [28], [29], that we can provide provide low

overhead, low performance penalty determinism for GPUs by

focusing solely on atomic instructions. We demonstrate that

determinism for atomics is sufficient to guarantee determinism

under an assumption of data-race freedom (elaborated in

Section IV-A), a property known as weak determinism [9].

Refining this notion of weak determinism further for GPUs,

DAB exploits the relaxed atomics used in graph analytics and

machine learning GPU workloads [29] to reduce the overheads

of deterministic execution. The crux of our approach is to

provide hardware buffers for atomic operations to keep them

isolated from other threads. We evaluate the costs and benefits

of providing this buffering at various levels of the GPU thread

hierarchy, including the warp- and scheduler-levels. Scheduling

of threads within the chosen level is done deterministically to

avoid the deleterious affects of floating-point rounding, as is

the process of flushing buffers periodically when they reach

capacity. Broadly, when more threads share a buffer it lowers

the hardware costs, but imposes more restrictions on GPU

scheduling and can have mixed effects on buffer flushing,

ultimately resulting in a complex set of trade-offs which we

explore.

Overall, this work makes the following contributions:

1) We show that weak determinism can improve perfor-

mance and provide correctness for reduction workloads

that use atomic arithmetic instructions.

2) We propose DAB, an architecture extension that provides

deterministic execution on GPUs with low overheads for

reduction workloads.

3) We introduce different atomic buffering schemes and

characterize them on atomic-intensive benchmarks.

4) We propose different determinism-aware schedulers to

enable buffering at a coarser granularity, greatly reducing

the area overhead required for atomic buffering.

II. BACKGROUND AND MOTIVATION

This section gives an overview of the neural network and

graph algorithms commonly deployed on GPUs, and their

sources of non-determinism. It also describes the consequences

of non-determinism for these workloads.

A. Neural Networks

Neural networks have emerged as a powerful tool to solve

problems in domains such as natural language processing [30],

[31], [32], image [1], [2], [33], [34], speech [35], [36],

[37], [38], [39], and pattern recognition [40]. They repeat

a computationally intensive training process numerous times

to tune hyperparameters and search for optimal network

architectures [41].

Due to its parallel nature training is performed on GPUs.

One of the most common APIs used for neural network training

is Nvidia’s cuDNN library [14], which offers algorithms

for training different types of networks. A subset of these

algorithms are used to train convolutional neural networks

(CNNs), where each evoked call trains either one layer

of activations or weights. While computationally efficient

algorithms such as Winograd [42] are often favored, they

have high memory overheads and have restrictive dimensional

constraints (3×3 or 5×5 filters). For layers where Winograd

is not suitable, a non-deterministic algorithm is often used

instead, since it has zero memory overhead, no dimensional

restrictions, and is sometimes faster than deterministic algo-

rithms. Increasingly 1×1 filters are employed to unlock deeper

and wider networks [43].

Our analysis finds that non-determinism is caused by floating

point atomics and the non-associativity of floating point val-

ues. 1 Fused multiply-add operations are executed on activation

and gradients, and atomics update the weight gradients. Though

the non-deterministic effects are small, they can propagate and

amplify throughout the network [44], resulting in unacceptable

variances in results. This is especially problematic during

hyperparameter tuning or network architecture search where

changes in accuracy may be due to changes to the model or

non-deterministic execution.

B. Graph Algorithms

Graph algorithms are used in analyzing social [45] and

biological networks [46], computer networking [47], [48],

artificial intelligence [49]. For example, Betweenness-Centrality

(BC) [50] is a well-known graph algorithm used to classify

popular nodes within a network. Efficient GPU implementations

of BC have been developed [4], [51]. Similar to cuDNN,

the source of non-determinism in GPU implementations of

BC is the non-associativity of floating point addition. BC
performs a graph traversal and iteratively updates node data

using atomic adds. BC is used in applications of machine

learning to physical [52] and biological sciences [53], [54],

[55], [56], and in reinforcement learning [57], where physical

phenomena are represented as graphs.

1According to [14], a non-deterministic algorithm is available for calculating
a particular loss function for recurrent neural networks (RNNs). However,
we were unable to find the source of non-determinism in RNNs, regardless
of the chosen algorithm. The disassembled PTX also suggests that the non-
deterministic algorithm is not a reduction algorithm, so we leave RNNs as
future work.
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Fig. 2: AtomicAdd running on DAB vs locking algorithms on

non-deterministic GPU, normalized to AtomicAdd, simulated

on GPGPU-Sim.

C. Software Based Determinism

While deterministic execution can be achieved through

software solutions for both neural network training and graph

algorithms, there are some drawbacks. Many software-based

determinism schemes may require non-trivial effort in order to

have comparable performance to the non-deterministic alterna-

tive. For example, while cuDNN’s deterministic convolution

algorithm has good performance, it is the result of hand-

tuned SASS code optimized for a given GPU architecture [14].

The required engineering work is a significant overhead for

enabling deterministic execution on a general set of workloads.

Without heavy optimization, software solutions that render

generic reduction workloads deterministic can incur significant

performance overheads [13].

To understand the performance impact of using deterministic

versus non-deterministic GPU algorithms, we designed a simple

microbenchmark that summed up elements of an array into a

single output variable. In the non-deterministic algorithm, each

thread atomically adds an array element to the output. Since the

ordering of atomic operations is non-deterministic, the output

is non-deterministic as well. To achieve deterministic results,

reduction trees or ticket lock-style GPU algorithms [58], [59]

could be used to sum up the elements. While reduction trees

are fast, they assume the summed values are available a priori,

whereas reduction workloads require calculating the summed

values on the fly. This means that applying reduction trees

to reduction workloads would require expensive barriers or

a separate kernel to ensure all dynamically generated values

are available. Although locks are sometimes not preferred for

GPUs due to poor performance and potential SIMT deadlock

issues [60], [61], we utilize the deterministic behavior provided

by them to compare to our non-deterministic approach. We

implemented three locking algorithms: a basic Test&Set-style

centralized ticket lock where each thread has the same ticket

number for every run (and thus the order threads perform

their atomics in is deterministic), a variant that reduces

overhead by performing exponential backoff in software when

the Test&Set’s lock acquisition fails, and a Test&Test&Set
algorithm that reduces Test&Set’s overhead by only attempting

to acquire the lock when it is likely to succeed. Figure 2

compares the execution time of atomicAdd running on DAB

to the three different locking algorithms on a non-deterministic

GPU in GPGPU-Sim, normalized to atomicAdd. Although

the optimized deterministic approaches reduce the overhead

over the base Test&Set algorithm, especially as array size

(and thus contention) increase, all three locking algorithms

take substantially longer than the non-deterministic atomicAdd

version.

Our microbenchmark demonstrates that non-deterministic

algorithms can significantly outperform deterministic ones.

However, for realistic workloads the performance gap between

deterministic and non-deterministic algorithms is more blurred.

Similar to our microbenchmark, cuDNN’s non-deterministic

algorithms often utilize atomics to improve performance.

However, as customers preferred deterministic algorithms,

NVIDIA focused their efforts on optimizing deterministic

algorithms, which closed the performance gap between de-

terministic and non-deterministic algorithms [62]. Thus, for

CNN training, we found that the gap between the deterministic

and non-deterministic convolution algorithms heavily depends

on the dimensions of the convolution, and neither algorithm

consistently performs better than the other across all dimensions.

Prior work has also demonstrated similar conclusions between

deterministic (pull-based) and non-deterministic (push-based)

graph algorithms, where the relative performance between the

push- and pull-based algorithms is dependent on the input

graph [16], [19].

D. Lack of Reproducibility

Reproducibility and verifiability are essential aspects in

software research and development. It allows us to verify the

correctness of experimental results and easily build off prior

work. However, both graph analytics and machine learning

research is faced with the problem of a lack of reproducibility.

Recent work surveyed recent publications in major machine

learning conferences and concluded that the high variance

between trials makes it difficult to isolate the impact of the

novel contributions introduced in each work [15]. This is

particularly an issue since the improvements in accuracy often

range within 1-3% compared to the baseline, making it difficult

to differentiate between the effects of random initialization,

seeding, non-deterministic results, and legitimate improvements.

Similarly, additional work investigated the sources of non-

determinism in vision-based reinforcement learning and iden-

tified several key sources: non-deterministic GPU operations,

network initialization, learning environment, batching, and

exploration [6]. Crucially, despite holding every other aspect

constant and only introducing non-determinism due to non-

deterministic GPU operations, the results had a variance of 12%.

This is especially crucial for safety critical applications such as

autonomous vehicles and medical diagnostics, where rigorous

safety regulations demand reproducibility and verifiability.

III. CHALLENGES OF DETERMINISM

This section outlines the challenges of achieving determinis-

tic execution for GPU reduction workloads and the limitations
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of prior work.

A. Reduction Workloads

As discussed in Section II, workloads that use atomics

for reductions are commonly deployed on GPUs for their

inherent parallel nature. The structure of reduction workloads

splits computation into two phases. The first phase partitions

computation among threads, where each thread stores their

partial computations in memory. Then, a reduction kernel is

invoked which reduces these partial computations into the final

result before rewriting back to memory. However, the expensive

read-modify-write cycles to accumulate the partial results and

the memory overhead incurred to store the partial results can

be eliminated by using atomic addition operations instead [63].

B. Non-Determinism in GPUs

When executing reduction workloads on GPUs, there are

many intertwined sources of non-determinism. First, unpre-

dictable states of the memory hierarchy and various heuristic-

based schedulers cause threads to be scheduled in a non-

deterministic manner, affecting order of operations. For exam-

ple, whether a warp is scheduled can be dependent on a cache

hit or miss, which cannot be statically determined since GPU

state is unknown from previously executed kernels.

The second reason is the non-associative nature of floating

point arithmetic. Floating point numbers represent real numbers

in hardware using fractions of base 2. Due to this limitation,

real numbers cannot be expressed exactly, which leads to

representation error. Additionally, the bit width of a floating

point ALU is limited, so it is unable to calculate the exact

result, leading to floating point rounding errors when calculated

in hardware, regardless of the rounding mode. This causes

different results to be produced when performing arithmetic

in a different order. To demonstrate rounding errors caused

by ordering of reduction operations between threads, Figure 1

illustrates a simplified example, adapted from Goldberg [64].

For ease of understanding, in the example we assume a base-

10 floating-point representation, three digits of precision and

that non-significant digits are rounded up after performing

addition. Assume Thread 1, 2 and 3 increment the reduction

variable with values a = 1.00, b = 0.555, and c = −0.555.

Under the ordering on the left, the reductions compute (a+
b)+c= 1.56+(−0.555) = 1.01. With the ordering on the right,

the reductions compute (b+ c)+a = 0+1.00 = 1.00, which

differs. Similar differences can occur with higher-precision

base-2 floating-point and other rounding modes. While the

differences introduced by each individual change in reduction

ordering may be small, during lengthy computations rounding

errors can compound and become significant [65]. Such non-

determinism can cause issues for debugging and validation,

including deadlocks [66].

C. Problems with Prior Deterministic GPUs

While there have been many prior works on deterministic

execution for massively parallel systems [67], [68], [69], [70],

[71], most of these solutions focus on software. GPUDet

Fig. 3: GPUDet Execution Mode Breakdown.

focuses on providing deterministic execution on GPUs through

its hardware architecture [12]. GPUDet provides strong deter-

minism by handling all global memory instructions. It appends

all global stores to a per-thread store buffer instead of directly

writing to global memory. Execution of programs is divided

into phases called quanta, where a thread executes up to a

fixed number of instructions in parallel mode and then waits

for all other threads to end their quanta as well. If a thread

encounters an atomic instruction, it will prematurely mark the

end of its quantum and end parallel mode. Once all threads

have reached the end of their quanta, the threads enter commit

mode and global stores in the store buffers are made visible

in a deterministic manner, accelerated by Z-buffer hardware

in the GPU. Atomics are handled in serial mode, by issuing

warps serially in a set order, essentially serializing the GPU.

The imposition of frequent quantum barriers and serialization

of atomics causes GPUDet to have slowdowns of up to 10×
in some applications.

Figure 3 breaks down the execution modes of GPUDet

and compares the execution time to a non-deterministic GPU

baseline for convolution and graph applications (workloads and

methodology described in Section V). The high execution times

previously reported for BFS on GPUDet [12] are observed

in Figure 3 for BC, which also has BFS kernels. The serial

mode execution times are relatively high since these are with

atomic intensive workloads as opposed to the benchmarks in

the original work. For these benchmarks, GPUDet spends the

majority of the execution time in serial mode dealing with

atomic operations, which is the root cause of performance

slowdown. Thus, new approaches are needed.

IV. DETERMINISTIC ATOMIC BUFFERING

In this section, we first describe DAB’s memory consistency

model, which states the assumptions DAB makes about

programs and what guarantees it provides in return. Then

we describe how DAB provides determinism for reduction

workloads via atomic buffering by locally reducing atomic

operations within a core before serializing between cores.

This hierarchical approach exploits GPU atomics that become

reduction operations [29] to significantly improve performance

over serializing all atomics directly (Section III-C).

A. Memory Consistency Model

DAB uses the sequentially consistent for heterogeneous-race-

free (SC-for-HRF, or HRF) memory consistency model [24],

984



Fig. 4: Block diagram of DAB hardware. Intra-core determinism

is enforced by atomic buffers and determinism-aware schedulers

(Sections IV-B-IV-C), while inter-core determinism is enforced

by a deterministic buffer flushing order (Section IV-D).

[25], [27], [29], [72], [73], which is widely used in modern

GPUs. HRF adds scoped synchronization to the popular

sequentially consistent for data-race-free (SC-for-DRF, or DRF)

memory consistency model that is widely used in multicore

CPUs [20], [21], [22], [23], [28].

Like other work [74], [75], DAB assumes CUDA programs

are DRF. Moreover, we also assume that programs respect

strong atomicity – i.e., that within a given kernel, if an address

is ever accessed atomically, all accesses must be atomic [76].

Given a compatible program, DAB guarantees more than

just SC behavior, but additionally a deterministic outcome

by imposing deterministic semantics on atomic operations.

DAB is similar to and inspired by the Kendo [9] scheme

for deterministic CPU multithreading, which also makes a

DRF assumption. For compatible kernels, DAB provides the

SyncOrder determinism of Lu et al. [77], which states that

each load returns the same value on each execution. DAB-

incompatible kernels, e.g., those with data races, are not

guaranteed to execute deterministically.

While Kendo focuses on lock acquires and releases, DAB

leverages the fact that GPU reduction workloads can benefit

from relaxed memory orderings [29] to reduce the overheads

of determinism. For example, in CUDA, all atomic operations

in the programs we study are compiled into atomics with no

implicit ordering [27], and do not implicitly include a memory

fence, making them equivalent to relaxed atomics in the C,

C++, HSA, and OpenCL memory consistency models [23], [24],

[26] (separate CUDA fence instructions exist when memory

ordering is desired). This lack of memory ordering allows

these atomic operations to be aggressively buffered within

each streaming multiprocessor (SM), reducing the rate of inter-

core communication which is a key overhead in DAB.

Additionally, CUDA atomic operations can be compiled into

one of two PTX instructions: atom that returns a value in a

register or red (for “reduction”) with no output. red instructions

avoid dependencies that cross thread or warp boundaries. While

red instructions are not emitted by Nvidia’s nvcc compiler

for our workloads, we confirm through manual inspection that

the return values of atoms in our workloads are never used,

and we believe this no-return optimization is leveraged in the

SASS machine code. The lack of a return value again enables

aggressive buffering of atomics.

DAB supports all of PTX’s red instructions, including

non-associative ones like floating-point addition. DAB can

deterministically execute atom instructions, atomic loads/stores,

volatile accesses, and memory fences (none of which are found

in our workloads) by incurring a buffer flush (Section IV-D)

to provide global ordering. For simplicity, in the rest of this

paper, atomic operations refers to red instructions. DAB also

supports CUDA’s syncthreads local barrier (found in our

cuDNN convolution workload) which includes a CTA-level

memory fence, again via a buffer flush. Though complex,

the rich interface exposed by CUDA atomics allows DAB to

provide determinism at low cost in the common case.

B. Warp-Level Atomic Buffers

In DAB, atomic instructions operate on storage in dedicated

buffers, instead of writing directly to global memory. Each

atomic buffer contains multiple entries, where each entry holds

a memory address, an argument, an opcode and a valid bit,

e.g., an atomic operation incrementing address 0xB0BA by 1

would be represented as the tuple (0xB0BA, 1, add.f32, valid).
Atomic buffers support associative search by memory address.

Each buffer has full and non-empty bits to facilitate the buffer

flushing process, which makes the partial results stored in each

atomic buffer globally visible (Section IV-D).

We begin with a simple, though impractical, scheme where

each warp has its own atomic buffer with at least 32 entries

to support all 32 threads in the warp performing an atomic

operation (Figure 5a). An atomic is executed provided sufficient

space exists in the per-warp buffer. If there are insufficient

entries the warp is blocked from issuing and the full bit is set.

Warps are kept active while the buffer is non-empty and wait

for the flushing process before they can be reclaimed.

Figure 6 shows a simplified example of warp-level buffering

illustrating operation for a single warp. For simplicity, the

example warp has one thread. We assume a 2-entry atomic

buffer so at most two atomic instructions can be executed

before stalling. Initially the buffer is empty, then an atomic

add is performed which fills the first buffer entry ( 1 ). Later,

another atomic add is performed, filling the second buffer entry

( 2 ). Since there are no more available entries in the buffer,

the full bit is set. Further atomic instructions from this warp

are blocked from issuing until the buffer is flushed.

The contents of a warp-level atomic buffer are deterministic

since they are filled based on program order. If threads in the

same warp write to the same address, we fill atomic entries
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Fig. 5: Atomic Buffering Architectures
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Fig. 6: Atomic Buffers, without (left) and with Atomic Fusion

(right).

by increasing thread ID. This ensures a warp-level buffer has

deterministic contents under any scheduling scheme.

While simple, warp-level buffers require substantial area

overheads – each buffer entry is 9 bytes (5B address, 4B

argument, 1B for opcode + valid bit). With 32 entries per

buffer, and a maximum of 64 warps per SM, the area overhead

is quite significant at about 20 KB per SM. This motivates our

next scheme which shares atomic buffers across warps.

C. Scheduler-Level Buffering

Modern GPUs such as Nvidia’s TITAN V have 4 warp

schedulers per SM, with each scheduler responsible for issuing

a subset of warps in the SM. Scheduler-level buffering

(Figure 5b) allocates one atomic buffer per warp scheduler,

reducing the area of atomic buffers by 16× compared to warp-

level buffering (as we move from 64 warps to 4 schedulers).

With warps sharing a single atomic buffer, program order

and thread ID no longer suffice to deterministically order

atomic operations, as two warps may “race”, e.g., based

on the non-deterministic latency of cache accesses, to fill a

particular buffer entry. This requires us to adopt determinism-

aware warp scheduling, described next. We start with a

simple round-robin scheme, then successively relax this to

improve performance while preserving determinism. We defer

discussion of deterministically assigning warps to schedulers

until Section IV-C5.

1) Strict Round Robin: The most straightforward

determinism-aware warp scheduler is a strict round robin

policy, where warps belonging to the same scheduler are issued

in a fixed order (skipping threads blocked on syncthreads).

This scheme has non-trivial overheads compared to our

non-deterministic baseline, however, as it does not allow

warps that could issue to start early.

Figure 7a shows how Strict Round Robin (SRR) orders the

execution of two warps A and B on a given scheduler, with

the height of each rectangle illustrating variable latency for

non-atomic (light gray) and atomic (dark gray) instructions.

SRR always issues from warp A first. Only when warp A is

issued, is warp B considered for issuing. If warp A is blocked

from issuing, either from hazards or unfetched instructions, no

instruction is issued, even if warp B is unblocked ( 1 ).

2) Greedy Then Round Robin: To improve the performance

of SRR, we observe that only atomics need to be ordered

to preserve determinism. Thus, we can use a more relaxed

scheduling policy that runs any conventional scheduling policy

up until atomic instructions are reached. Once all warps reach

their first atomic instruction (or have exhausted all instructions),

the scheduler switches to the SRR scheduling policy until the

kernel ends. Prior work has demonstrated that the Greedy-

Then-Oldest scheduling policy (GTO) performs well across

most workloads, and is often used as a starting point for

more elaborate scheduling policies [78]. So we use GTO

scheduling to run prior to any atomic instructions, and we call

this scheduling policy Greedy-Then-Round-Robin (or GTRR).

The operation of GTRR is shown in Figure 7b. The initial

use of GTO scheduling ( 2 ) avoids stalling for non-atomic

instructions. Once all warps either encounter an atomic reduc-

tion instruction ( 3 ), or have exited, scheduling switches to

SRR. This inflection point is deterministically reached because

our memory consistency model assumptions (Section IV-A)

ensure all communication between threads uses atomics or

appropriate fencing. With warp divergence, this still holds
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true when divergence is handled by SIMT stacks, where both

sides of a branch do not execute concurrently and which side

executes first is deterministic [12]. As atomics only occur after

the switch to SRR, the ordering of atomic operations remains

deterministic. The switch to SRR until the kernel ends can

however lead to additional stalling ( 4 ).

3) Greedy Then Atomic Round Robin: We can further relax

GTRR scheduling by observing that the execution between

atomic instructions does not need to be deterministic. After the

warps issue their atomic instruction, conventional scheduling

can be employed again up until the next “round” of atomic

instructions is reached, so long as the relative issue order of

the atomics is deterministic. After the “round” of atomics is

complete, non-deterministic scheduling (like GTO) of non-

atomic instructions can resume once more. This treats each

atomic instruction as a scheduler-level barrier. For warps that

do not have any atomic instructions, this ”barrier” is reached

once it executes all its instructions (similar to the condition to

switch to SRR in GTRR).

While the scheduler is running atomics in round robin order,

a warp that has already executed its atomic instruction can

start executing its subsequent non-atomic instructions without

violating determinism. We call this scheduling policy Greedy

Then Atomic Round Robin (GTAR).

GTAR is demonstrated in Figure 7c. GTO scheduling is

used initially ( 5 ) until all warps reach an atomic instruction

( 6 ), at which point atomic instructions issue and execute in

round robin order. As soon as warp A is done with its atomic

instruction, it can proceed with a non-atomic instruction ( 7 )

without needing to wait for warp B’s atomic to complete. Once

all warps finish its atomic, scheduling reverts to GTO.

4) Greedy With Atomic Token: Our final determinism-aware

scheduling algorithm exploits the observation that atomic

instructions do not need to be executed strictly one after the

other, so long as deterministic ordering is preserved. Similar to

GPUDet’s serial mode [12], we pass a single “token” among

warps, and only the warp possessing the token can issue an

atomic instruction. At any kernel launch, the warp with the

smallest warp ID is initially granted the token. It passes the

token to the next warp if it either exhausts all of its instructions,

or if an atomic instruction is issued. If a warp wants to issue

an atomic instruction, but does not hold the token, it stalls

and other warps will have priority to be issued over it. This

creates a deterministic ordering of atomic instructions across

warps, while still permitting heuristic-based scheduling for non-

atomic instructions. We call this scheduling policy Greedy-With-

Atomic-Token (GWAT). Similar to GTAR, GWAT enforces the

implicit barriers inserted between warps executing in the same

hardware slot, and warps from different kernels.

Figure 7d shows GWAT in action. Initially, GTO scheduling

occurs while warp A holds the token. At 8 , warp A encounters

an atomic and is allowed to issue the atomic since it holds

the token. After warp A issues its atomic, the token is passed

to warp B, which issues an atomic at 9 and then passes the

token back to A. When warp A completes at 10 , the token is

passed back to warp B.

5) Deterministic CTA Distribution: Even with determinism-

aware warp scheduling, determinism additionally requires the

set of warps assigned to each scheduler is also deterministic,

which we refer to as deterministic CTA distribution. Otherwise,

order of atomics in each buffer will be affected by differing

CTA distributions. We statically partition CTAs among each

scheduler in each SM.

Warp and kernel exits must also be handled specially. Within

a given scheduler, CTAs are dispatched in batches. All atomics

from batch bi must complete before any atomics from bi+1.

Note that non-atomic instructions from bi+1 can run earlier

(except with SRR scheduling); only atomics are confined to run

within their batch. Batching CTAs ensures a fixed set of warps

share one atomic buffer, and determinism-aware scheduling

orders the atomics from those warps.

D. Buffer Flushing

Buffer flushing is the process in which all values stored

in all buffers are made globally visible by writing them to

memory in a deterministic order. To ensure determinism, DAB

flushes buffers only when either 1) all buffers are full, 2) the

kernel exits, or 3) a memory fence is reached.

Additionally, DAB addresses the non-deterministic ordering

from the interconnect network with a protocol to buffer and

reorder memory packets as shown in Figure 8. Once all the

buffers are ready to be flushed, we first send pre-flush messages

to each memory sub-partition, indicating how many buffer entry

flushes from each cluster to expect (Figure 8a). Each memory

sub-partition should expect pre-flush messages equal to the

number of GPU compute clusters. Next, each buffer pushes

its contents to the interconnect (Figure 8b). Each memory

sub-partition first waits until all pre-flush messages have been

received. Each sub-partition will then use the expected number

of messages from each SM to re-order the atomics in round

robin order. If the number of expected messages from each SM

is not equal, SMs with less messages are eventually skipped

once every message from that SM has arrived. As buffer

contents from different SMs arrive, they are sent to the ROP

to perform the actual atomic operation based on this ordering,

and any atomic arriving out of order is buffered in a write

queue called a flush buffer, waiting for its turn. If an incoming

atomic is buffered while the atomic next in order is waiting in

the flush buffer, that atomic is popped from the flush buffer

and is sent to the ROP. In order to keep the number of buffered

transactions manageable, buffer flushes may not overlap, and

buffer flushing can only occur once every transaction write-

back from the previous buffer flush has been received. One way

to enable this large buffer for reordering the potentially many

atomics sent to the memory partitions is to employ virtual write

queues, where the a portion of the L2 cache is repurposed as

buffering space [79]. This protocol prevents compute clusters

from serializing buffer flushes. The buffers are then cleared

and execution resumes across all cores.
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Fig. 7: An example schedule of two warps under each of DAB’s four determinism-aware schedulers. Light gray boxes indicate

non-atomic instructions and dark gray boxes atomic instructions; box height indicates latency.

Fig. 8: Mechanism of inter-core determinism. (a) Each cluster

sends a pre-flush message to each memory sub-partition,

indicating expected number of messages. (b) Each cluster

pushes its buffer flushes to interconnect. (c) Each memory

sub-partition waits and buffers arriving flushes that are out of

order. (d) Stalled buffer flushes are reordered and sent to ROP.

E. Atomic Fusion

To further optimize our design, we implement the fusing of

identical atomic operations to the same address within atomic

buffers, effectively performing a local reduction. We call this

atomic fusion. Atomic fusion saves buffer space and delays a

costly buffer flush. Atomics to the same location can be fused,

even if they are not from the same warp. Since the atomic

buffer is a fully-associative structure, atomic fusion has low

latency impact when searching for matching addresses.

Figure 6b illustrates the operation of a scheduler-level buffer

with atomic fusion enabled. In contrast with Figure 6a, which

does not employ atomic fusion, the two adds to address

0xB0BA can use the same buffer entry, summing the argument

from the first atomic ( 3 ) with that from the second atomic

( 4 ) to save space.

Both applications with irregular access patterns (graph

algorithms), and ordered atomic access patterns (convolutions)

benefit from atomic fusion. For example, cuDNN’s convolution

algorithm partitions the filter into n even regions, and m · n
CTAs are launched, with m CTAs atomically adding to each

region. The CTAs that atomically access the same region also

have the same memory access pattern, meaning additional

fusion opportunities if these CTAs are distributed to the same

scheduler where they share an atomic buffer.

F. Atomic Coalescing

The baseline GPU coalesces atomics into a single transaction

per cache sector. This can be done for the buffer entries as well

in DAB. While the entries remain separate within the buffer,

entries that write to the same cache sector can be marked,

and can be coalesced together into a single transaction while

flushing, effectively lowering memory traffic.

G. Limitations

Enabling/Disabling DAB A potential solution for disabling

DAB is to extend existing API calls to toggle DAB’s hardware

structures that enforce determinism. Also, API calls should

toggle schedulers to be determinism-aware (e.g. for GWAT, stall

a reduction instruction if the warp does not have the token). For

CUDA workloads without reductions, the schedulers require

no toggling since GTRR, GTAR and GWAT operate like GTO

in the absence of reductions.

Context Switching Prior work has proposed to use context

switching for preemptive multitasking on GPUs [80], [81], [82],

[83]. In addition to saving architectural and scheduler states,

DAB requires additional support for context switching. For

interrupt-driven context switches, DAB would have to either

statically partition the buffer between the switched kernels, or

save the buffer contents. For context switches triggered by some

deterministic virtual clock (like logical clocks in [9]), buffers

are flushed during each context switch to preserve determinism.

However, note that training DNNs typically involves running
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Fig. 9: IPC Correlation of GPGPU-Sim with TITAN V. Dotted

line represents a perfect correlation between simulation and

hardware.

GPUs for long periods with time-sharing accomplished using

check-pointing between GPU kernel launches for individual

minibatch training iterations using frameworks such as PyTorch

and TensorFlow).

Independent Thread Scheduling Under Volta’s independent

thread scheduling, each sub-warp can be treated as a separate

warp until convergence. Once the sub-warps of a given warp

diverge, their execution can be interleaved in strict round robin

fashion (while determinism-aware scheduling is still employed

at the warp-level), in order to maintain a deterministic ordering

of atomics between subwarps.

V. METHODOLOGY

To evaluate DAB, we extended GPGPU-Sim 4.0.0 [84], [85],

[86] to model the atomic buffers, determinism-aware schedulers,

and the buffer flushing mechanism as described in Section IV

using the configuration in Table I. For buffer flushing, we

simulate an unbounded message buffer for reordering buffer

flushes in the memory partition after arriving from compute

clusters. Large buffers could be implemented with low area

overhead similar to virtual write queues [79], as noted in

Section IV-D. To demonstrate the feasibility of this scheme,

we repeated our simulations with each out-of-order atomic

triggering L2 cache evictions to mimic the virtual write queue.

On average, these extra evictions increased the total L2 cache

miss rate by less than 1% compared to our original simulations.

The non-deterministic baseline is an unmodified GPGPU-

Sim using GTO scheduler, where branch divergence is handled

by SIMT stacks. Figure 9 shows IPC correlation of 96.8% and

error rate of 32.5% on our evaluation benchmarks comparing

GPGPU-Sim and TITAN V GPU. We also compare against an

updated version of GPUDet [12] as the deterministic baseline.

Our GPUDet updates enabled it to run on newer GPUs, which

required adding support for sector caches, increasing the Z-

cache size in GPUDet to 260k sets, and disabling deterministic

CTA distribution to fully simulate some benchmarks. These

changes should only inflate GPUDet’s performance for a

better performing deterministic baseline. All benchmarks are

evaluated with CUDA 8.0, and the convolution benchmarks

are evaluated with cuDNN 7.1. We use this version of CUDA

because it is the latest version of cuDNN that embeds the PTX,

which our version of GPGPU-Sim requires [86].

To validate that DAB produces deterministic results, we

extended the baseline GPGPU-Sim and DAB to model non-

TABLE I: GPGPU-Sim Configuration

# Compute Clusters 40

# SM / Compute Cluster 2

# Streaming Multiprocessors (SM) 80

Max Warps / SM 64

Warp Size 32

Number of Threads / SM 2048

Baseline Scheduler GTO

Number of Warp Schedulers / SM 4

Number of Registers / SM 65536

Constant Cache Size / SM 64KB

Instruction Cache 128KB, 128B line, 24-way assoc.

L1 Data Cache + Shared Memory 128KB, 128B line, 64-way assoc. LRU

L2 Unified Cache 4.5MB, 128B line, 24-way assoc. LRU

Compute Core Clock 1200 MHz

Interconnect Clock 1200 MHz

L2 Clock 1200 MHz

Memory Clock 850 MHz

DRAM request queue capacity 32

Interconnect Flit Size 40

Interconnect Input Buffer Size 256

Cluster Ejection Buffer Size 32

TABLE II: Graph Configurations for BC and PageRank.

Benchmark Graph Nodes Edges Atomics PKI

BC 1k 1,024 131,072 6.92

BC 2k 2,048 1,048,576 12.4

BC FA 10,617 72,176 4.12

BC foldoc (fol) 13,356 120,238 4.14

BC amazon0302 (ama) 262,111 1,234,877 0.70

BC CNR 325,557 3,216,152 0.004

PageRank (PRK) coAuthor (coA) 299,067 1,955,352 47.2

determinism in GPUs as shown in [12]. In addition, we

created a benchmark whose output is sensitive to the order of

atomics, and validated that the injected non-determinism leads

to different bitwise results on the baseline simulator, while

DAB obtained the same results across different runs.

A. Atomic Workloads

The benchmarks focus on workloads that stress atomic arith-

metic operations. Since DAB only affects atomic operations,

benchmarks without atomic instructions see no change in

performance. Thus, we evaluate the performance impact of

DAB on a set of benchmarks from Pannotia [4], and convolution

layers using the cuDNN library [14].

BC and PageRank: Pannotia [4] provides push based algo-

rithms for graph applications that use atomic instructions such

as Betweenness Centrality (BC), introduced Section II, and

PageRank, which extensively uses atomics. The graphs used

for evaluation are shown in Table II.

cuDNN Convolutions: We tested backward filter convolutions

using cuDNN’s Algorithm 0. The evaluated layers are a subset

of the ResNet building blocks described in [2] on the ImageNet

dataset [87], with batch size 16. Each building block contains

three layers, and are repeatedly stacked in order to increase

the depth of the network. These layer configurations are shown

in Table III. Each layer will be referred to as {Block} {Lay}
(e.g cnv2 1 for layer 1 of block conv2).

VI. EVALUATION

Figure 10 presents the overall performance of DAB compared

to the non-deterministic baseline and GPUDet, with results
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Fig. 10: Performance of DAB (GWAT-64-AF-Coalescing) compared to prior deterministic work.

TABLE III: ResNet Layer Configurations for Convolution

Block Lay
Input Size

(C×H×W )
Output Size
(C×H×W )

Filter Size
(K×C×H×W )

Atomics
PKI

cnv2 x
1 256×56×56 64×56×56 64×256×1×1 1.08
2 64×56×56 64×56×56 64×64×3×3 1.09
3 64×56×56 256×56×56 256×64×1×1 1.72

cnv3 x
1 512×28×28 128×28×28 128×512×1×1 1.70
2 128×28×28 128×28×28 128×128×3×3 1.70
3 128×28×28 512×28×28 512×128×1×1 1.96

cnv4 x
1 1024×14×14 256×14×14 256×1024×1×1 3.74
2 256×14×14 256×14×14 256×256×3×3 3.75
3 256×14×14 1024×14×14 1024×256×1×1 3.74

normalized to stock GPGPU-Sim with GTO scheduling. DAB

provides deterministic execution and incurs only a 23%

geomean performance slowdown with low area overhead, while

GPUDet is 2-4× slower. With 4 schedulers per SM, 64 entries

per buffer and 9B per entry, total area overhead of DAB after

using L2 cache as a virtual write queue is 2.3 KB per SM (and

negligible logic area). Below we analyze DAB’s performance

in greater depth.

A. Warp & Scheduler-Level Buffering

Scheduler-level buffering performs similarly to warp-level

buffering but could reduce area overhead up to 16× (In the

Figure 11 comparison, area overhead is halved). Thus, the

remainder of evaluation focuses on scheduler-level buffering.

1) Scheduling Policies: Figure 11 presents the performance

of different scheduling policies (SRR, GTRR, GTAR, GWAT)

on graph applications and convolution. We increase buffer

capacity to 256 to reduce bottlenecks due to frequent stalls

from reaching buffer capacity. In general, more restrictive

schedulers such as SRR with scheduler-level buffering incur

only a geometric mean of 4% slowdown over WarpGTO.

However, scheduler-level buffering matches or exceeds the

performance of WarpGTO by up to 7% with more relaxed

schedulers such as GTRR, GTAR, and GWAT.

Scheduling policies have a significant effect on the perfor-

mance of convolutions when using scheduler-level buffering.

The varying gap between SRR and the rest of the schedulers

can be explained by the number of active warps during runtime.

The large gap in cnv2 1, cnv2 2, and cnv3 2 can be attributed

to schedulers having 6 warps active, allowing heuristic-based

schedulers more options to select a better warp to schedule. For

other layers (except cnv3 1), only 4 warps are active, giving

(a) Graph Applications

(b) Convolutions

Fig. 11: Performance impact of scheduling.

heuristic-based schedulers fewer options to schedule a better

warp. The relative performance of GTRR can be explained

by the number of warps executed per hardware slot. GTRR

performs close to heuristic-based schedulers when SMs are

not saturated (cnv2 1, cnv3 3), allowing GTRR to run mostly

under GTO mode up until atomics, or when only 2 warps are

distributed to each hardware slot (cnv3 1, cnv4 1, cnv4 3).

For the latter case, only 2 hardware slots are active when

the 2nd set of warps are distributed, meaning even if SRR is

run, the performance should not deviate much from heuristic-

based schedulers. In contrast, for layer 2 of all blocks, GTRR

performs closer to SRR than GWAT and GTAR, since each

hardware slot now runs more total warps, and only the first

executed warp is under GTO mode, while the rest are under

SRR mode, causing GTRR’s performance to be closer to SRR.

For graph workloads, the relative performance of each

scheduler varies between the different types of graphs. For the

small, dense graphs (1k, 2k), all schedulers perform the same

since there is only one warp to schedule in each scheduler.

For the smaller, sparse graphs (FA, foldoc (fol)), the SMs
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cannot be fully saturated either, leaving each scheduler with

at most 2 warps to schedule, so SRR performs very similarly

to the other schedulers. For CNR and amazon0302 (ama),

SMs are fully saturated, so the gap between SRR and other

schedulers starts to grow. However, for BC, only a subset of

threads are active at each kernel call, since each kernel operates

on one layer of nodes in the breadth-first search tree (refer

to Section II-B), meaning many threads and warps may exit

without executing any atomics. In addition, even with SMs fully

saturated, each hardware slot executes at most 2 warps. These

two points allow GTRR to execute under GTO more often, thus

performing closer to the heuristic-based schedulers. However,

for PageRank (PRK), every thread performs atomic updates at

every iteration, and the number of atomics executed per thread

varies greatly. With atomics forming an implicit barrier, the

irregular atomic pattern causes all schedulers to have non-trivial

overheads. This is expected, with prior work showing that even

dedicated graph algorithm accelerators struggle to accelerate

PageRank [88].

DAB’s speedup over the non-deterministic baseline can be

attributed to exploiting relaxed atomics. Atomic arithmetic

operations are treated like regular arithmetic operations during

execute and are allowed to write an entry to the atomic buffers

without blocking execution of future atomics. Since GWAT,

the most relaxed scheduling scheme, performs the best across

the evaluated benchmarks, further evaluation will be shown

with only GWAT.

2) Buffer Capacity: Figure 12 shows the effect of buffer

capacity on graph applications and convolutions. The evaluated

configurations use GWAT scheduler with 32, 64, 128, and 256

buffer entries, labeled as GWAT-32, 64, 128, and 256. Increas-

ing buffer capacity generally improves IPC as it decreases stalls

on a full buffer and reduces time spent on flushing. For dense

graphs, performance increases with buffer capacity since there

are enough non-zero edges to be atomically added. Sparse

graphs see a huge gain when increasing buffer capacity from

32 to 64 but lower gains thereafter, since there are not enough

atomics to fill up the buffers, meaning the extra capacity is

not utilized.

Increasing buffer size for scheduler-level buffering on

convolution however, only results in small improvements and

even performance loss in some cases. This can be attributed

to how convolution workloads are structured. The algorithm

performs calculations first, before performing a long sequence

of atomic adds. Since the total number of atomic adds do not

change with buffer size, having a larger buffer capacity only

reduces the frequency of flushing. Additionally, large buffers

can cause more atomics to be densely bunched together and

pushed to the interconnect at the same time, causing an increase

in interconnect stalls. With smaller buffers, flushing is more

spread out. Convolution performance is addressed by atomic

fusion which is discussed in Section VI-B1.

B. Buffer Optimizations

This section explores the effects of applying optimizations

on DAB to further reduce performance overheads.

(a) Graph Applications

(b) Convolutions

Fig. 12: Performance impact of buffer size.

1) Atomic Fusion: Figure 13 shows the effect of enabling

atomic fusion on graph applications and convolutions. Atomic

fusion increases performance for graph applications for all

evaluated graphs, since it reduces the number of atomic

operations performed at the ROP. Atomic fusion also increases

the effective capacity of the atomic buffers as multiple atomic

operations to the same address now only occupy 1 entry instead

of multiple entries in the buffer. This results in fewer stalls

due to the atomic buffer being full. Additionally, the GPU will

have fewer interconnect stalls it flushes fewer buffer entries.

Atomic fusion has a lesser effect with larger buffer sizes since

most atomic operations are already able to fit within the large

buffer without atomic fusion. Thus the extra effective capacity

from atomic fusion does not result in better performance.

Atomic fusion also increases performance for most convolu-

tion layers similar to graph applications. Most layers do not

see any improvement for the 32-entry case, since 2 warps of a

CTA are mapped to a scheduler, meaning 64 unique addresses

are written to before reuse occurs. However, for Layer 2 of

each block, atomic fusion does not improve performance.This

is due to misalignment of CTAs that leads to no buffer entry

reuse. For these layers, the filter is evenly partitioned into 18

sections (according to Section IV-E), and CTAs whose ids are

congruent modulo 18 write to the same partition. However,

with 80 SMs, the CTAs that write to the same partition are

never assigned to the same scheduler under the static partition

scheme described in Section IV-C5. In order to force atomic

fusion, we evaluated these layers by assigning CTAs to 72

cores instead, and obtained a speedup over using 80 cores,

despite using 8 fewer cores, as demonstrated in Figure 14.

2) Offset Flushing: From Section VI-A1, we see DAB does

poorly on cnv2 3. This is because every CTA atomically writes

to the same memory addresses. While this is exploited at the
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(a) Graph Applications

(b) Convolutions

Fig. 13: Atomic Fusion on scheduler-level Buffering

Fig. 14: Effects of “gating” SMs on GWAT-64-AF

intra-core level by atomic fusion, at the inter-core level, if every

buffer flushes to the same set of memory addresses in the same

order (hence, the same memory partitions), the interconnect

becomes congested, which would lead to longer buffer flushes

and more issue stalls due to full buffers. We remedy this with

offset flushing, where each SM starts flushing at a different

index to spread out the writes to each memory partition at

a given time. Since both SM id and the buffer contents are

deterministic, having some SMs start flushing at a different

index preserves determinism. Figure 16 demonstrates speedup

of offset flushing. Every SM with an even SM id starts flushing

at the 32nd index. Applying offset flushing to cnv3 3, where

every 4 CTAs write to the same set of memory addresses yields

minimal performance gain, hinting a lack of congestion.

3) Flush Coalescing: Coalescing buffer flushes on convolu-

tions for GWAT-64-AF improves performance by a geomean

of 13%, shown in Figure 17. Since atomic instructions in

convolution access strided memory locations, buffer flushes

that access the same cache sector can be coalesced to a single

transaction, reducing memory traffic (Section IV-F). However,

graph workloads did not improve much due to irregular data

access patterns. Figure 15 breaks down the different overheads

Fig. 15: Performance Overhead of DAB

Fig. 16: Effect of offset flushing on GWAT-64-AF

of DAB for different benchmarks.

4) Limitation Study: In this section, we relax various

constraints of DAB and observe its impact on performance.

While these relaxed versions are no longer deterministic, they

help identify bottlenecks in DAB. In Figure 18, we first relax

the constraint of reordering atomics at the memory partition

and instead, send the atomics to the ROP unit in the order

they arrive at the memory partition (DAB-NR). Next, we relax

the constraint of not allowing flushes to overlap (described

in Section IV-D, DAB-NR-OF). Finally, we relax DAB by

lowering the granularity of buffer flushing from GPU to

clusters, meaning each individual cluster flushes their buffers

independently as they become full, relaxing the implicit barrier

imposed across SMs (DAB-NR-CIF). From Figure 18, we

observe that relaxing the last constraint usually provides the

most speedup, implying that the implicit barriers across SMs

hamper performance, especially for graph benchmarks that

have irregular atomic accesses. Note that naively implementing

the same reordering scheme for this relaxed version of buffer

flushing may lead to intractable and an unbounded number

of buffered transactions at the memory partition, and more

sophisticated ordering methods are required at the memory

partition in order to enforce determinism.

VII. RELATED WORK

Previous sections discussed the design and performance

of GPUDet [12], a proposal for deterministic GPU hardware

and the most relevant point of comparison. Here we survey

additional related work in determinism for CPU programs.

Software Determinism Schemes Kendo [9] introduced weak
determinism, which tackles non-determinism caused by races

on synchronization objects (like lock acquires) by relying on

deterministic logical clocks. While Kendo is feasible on CPUs,

it is unlikely to scale up to GPU thread counts, and does not
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Fig. 17: Coalescing Buffer Flushes on Convolutions

Fig. 18: DAB with different constraints relaxed

take into account the specific semantics of GPU atomics as

DAB does. The CoreDet [10] compiler and runtime system uses

the same algorithm as that in GPUDet [12], leading to similar

scalability bottlenecks. More recent software schemes [67],

[89], [90] have coupled the Kendo scheduling algorithm

with sophisticated OS virtual memory support to reduce

overhead of per-thread store buffers. There are a wide range of

deterministic parallel programming languages which leverage

type systems [91], [92], [93] or functional programming [94],

[95] to enable high-performance determinism within a restricted

programming model.

Hardware Determinism Schemes A number of systems [11],

[96], [97] have explored deterministic CPU hardware support.

These schemes adopt the same deterministic scheduling tech-

nique with global barriers as used in CoreDet and GPUDet,

which imposes a scalability bottleneck, especially in the

presence of frequent atomic operations. DAB takes inspiration

from schemes like Calvin [11] and RCDC [97] which used

relaxed memory consistency models to improve performance,

similar to how we exploit semantics of GPU atomics.

Deterministic Floating-Point Collange et al. [13], [98] pro-

posed software techniques to address floating point rounding

errors. They use a wide super-accumulator to cover the whole

range of 32 bit floating point numbers. However, it incurs up

to 10× performance overhead compared to unordered floating

point operations, while also imposing high area overhead. Thus,

DAB tackles the problem of reproducibility by ensuring a

deterministic order of floating point atomic operations.

VIII. CONCLUSION

In this paper, we presented DAB, a GPU architecture

that provides deterministic execution with low overheads

for reduction workloads like graph algorithms and machine

learning. DAB exploits the GPU’s relaxed atomic semantics

and an assumption of data-race freedom to enable the use

of isolated atomic buffers for atomic operations, allowing

atomics to be performed deterministically in parallel. Coupled

with determinism-aware warp scheduling inside each core,

these buffers can be area-efficient while eliminating the non-

determinism caused by floating point rounding. Simulation

results show DAB outperforms GPUDet [12], a state-of-the-art

deterministic GPU baseline, by a significant margin of 2-4×.
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