
Mesorasi: Architecture Support for Point Cloud
Analytics via Delayed-Aggregation
Yu Feng*

University of Rochester
yfeng28@ur.rochester.edu

Boyuan Tian*

University of Rochester
btian2@ur.rochester.edu

Tiancheng Xu*

University of Rochester
txu17@ur.rochester.edu

Paul Whatmough
Arm Research

paul.whatmough@arm.com

Yuhao Zhu
University of Rochester

yzhu@rochester.edu

horizon-lab.org

Abstract—Point cloud analytics is poised to become a key
workload on battery-powered embedded and mobile platforms
in a wide range of emerging application domains, such as
autonomous driving, robotics, and augmented reality, where effi-
ciency is paramount. This paper proposes Mesorasi, an algorithm-
architecture co-designed system that simultaneously improves the
performance and energy efficiency of point cloud analytics while
retaining its accuracy.

Our extensive characterizations of state-of-the-art point cloud
algorithms show that, while structurally reminiscent of convolu-
tional neural networks (CNNs), point cloud algorithms exhibit in-
herent compute and memory inefficiencies due to the unique char-
acteristics of point cloud data. We propose delayed-aggregation, a
new algorithmic primitive for building efficient point cloud algo-
rithms. Delayed-aggregation hides the performance bottlenecks
and reduces the compute and memory redundancies by exploiting
the approximately distributive property of key operations in point
cloud algorithms. Delayed-aggregation let point cloud algorithms
achieve 1.6× speedup and 51.1% energy reduction on a mobile
GPU while retaining the accuracy (-0.9% loss to 1.2% gains). To
maximize the algorithmic benefits, we propose minor extensions
to contemporary CNN accelerators, which can be integrated
into a mobile Systems-on-a-Chip (SoC) without modifying other
SoC components. With additional hardware support, Mesorasi
achieves up to 3.6× speedup.

Index Terms—Point cloud; DNN; accelerator;

Artifact—https://github.com/horizon-research/efficient-deep-
learning-for-point-clouds

I. Introduction

In recent years, we have seen the explosive rise of intelligent
machines that operate on point clouds, a fundamental visual
data representation that provides a direct 3D measure of
object geometry, rather than 2D projections (i.e., images).
For instance, Waymo’s self-driving cars carry five LiDAR
sensors to gather point clouds from the environment in order
to estimate the trajectory over time and to sense object
depths [15]. Augmented Reality (AR) development frameworks
such as Google’s ARCore enable processing point clouds for
localization (SLAM) and scene understanding [2]. While point
cloud algorithms traditionally use “hand-crafted” features [48],

*Equal contribution

[51], they are increasingly moving towards learned features in
deep learning [43], [53], posing efficiency challenges.

We present Mesorasi1, an algorithm-architecture co-designed
system that simultaneously improves the performance and
energy efficiency of point cloud algorithms without hurting
the accuracy. Mesorasi applies algorithmic and architectural
optimizations that exploit characteristics unique to point cloud.
Critically, our algorithmic optimizations can directly benefit
software running on commodity GPUs without hardware sup-
port. Minor augmentations to contemporary DNN accelerators
(NPU) unlock more gains and widen the applicability.

We start by understanding the characteristics of point
cloud algorithms. They inherit the key idea of conventional
image/video processing algorithms (e.g., CNNs): extracting
features from local windows (neighborhoods) iteratively and
hierarchically until the final output is calculated. However,
since points in a point cloud are arbitrarily spread in the 3D
space, point cloud algorithms require explicit neighbor search
and point aggregation operations (as opposed to direct memory
indexing) before the actual feature computation.

This leads to two fundamental inefficiencies. First, the
three key steps—neighbor search, aggregation, and feature
computation—are serialized, leading to long critical path
latency. In particular, neighbor search and feature computation
dominate the execution time. Second, feature computation
operates on aggregated neighbor points, which are inherently
redundant representations of the original points, leading to
massive memory and computation redundancies.

We propose delayed-aggregation, a new algorithmic primitive
for building efficient point cloud networks. The key idea is
to delay aggregation after feature computation by exploiting
the approximately distributive property of feature computation
over aggregation. In this way, feature computation operates
directly on original input points rather aggregated neighbors,
significantly reducing the compute cost and memory accesses.
In addition, delayed-aggregation breaks the serialized execution

1[me-s"@ra-zē] Between two vision modes. meso-: in the middle; from
Ancient Greek μέσος. orasi: vision; from Greek óραση.

1037

2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)

978-1-7281-7383-2/20/$31.00 ©2020 IEEE
DOI 10.1109/MICRO50266.2020.00087



chain in existing algorithms, overlapping neighbor search and
feature computation—the two performance bottlenecks—to
hide long latencies.

To maximize the benefits of delayed-aggregation, we propose
minor extensions to conventional DNN accelerators. We find
that delayed-aggregation increases the overhead of aggregation,
which involves irregular gather operations. The hardware
extension co-designs an intelligent data structure partitioning
strategy with a small but specialized memory unit to enable
efficient aggregation. Our hardware extensions are integrated
into generic DNN accelerators without affecting the rest of a
mobile Systems-on-a-Chip (SoC).

We evaluate Mesorasi on a set of popular point cloud
algorithms and datasets. On the mobile Pascal GPU on
TX2, a representative mobile platform today, the delayed-
aggregation algorithm alone without hardware support achieves
1.6× speedup and 51.1% energy reduction while retaining
the accuracy (-0.9% loss to 1.2% gains). We implement and
synthesize the Mesorasi hardware support in a 16nm process
node and integrate it into a state-of-the-art SoC that incorporates
a GPU and an NPU. With 3.8% area overhead to the NPU
(<0.05% of a typical SoC area), Mesorasi achieves up to 3.6×
speedup, which increases to 6.7 on a futuristic SoC with a
dedicated neighbor search accelerator.

The artifact is publicly available at https://github.com/

horizon-research/efficient-deep-learning-for-point-clouds. In
summary, this paper makes the following contributions:
• We comprehensively characterize the performance bot-

tlenecks as well as the memory and compute cost of
state-of-the-art point cloud algorithms, and identify the
root-causes of the algorithmic inefficiencies.

• We propose delayed-aggregation, an efficient algorithm
primitive that enables point cloud algorithms to hide the
performance bottlenecks and to reduce the overall work-
load. Delayed-aggregation can readily achieve significant
speedup and energy savings on current-generation mobile
GPUs without hardware modification.

• We co-design hardware with delayed-aggregation to
achieve even greater speedups with minor, yet principled,
augmentations to conventional DNN accelerators while
retaining the modularity of existing SoCs.

II. Background

Point Cloud A point cloud is an unordered set of points
in the 3D Cartesian space. Each point is uniquely identified by
its < x, y, z > coordinates. While point cloud has long been
used as a fundamental visual data representation in fields such
as 3D modeling [16] and graphics rendering [26], [33], [40],
[47], it has recently received lots of attention in a range of
emerging intelligent systems such as autonomous vehicles [24],
robotics [55], and AR/VR devices [50].

Point Cloud Analytics Similar to conventional visual
analytics that analyzes images and videos, point cloud analytics
distill semantics information from point clouds. Examples
include object detection [24], semantics segmentation [17],
and classification [58]. While image and video analytics have

Output Input Module 1 Module 2 Module 3 FC FC

(a) Network architecture of PointNet++ [43].

Output 

Input Module 1

FCs

Module 2

Module 3 Module 4 Module 5 Module 6

MatMul

+
(b) DGCNN [53] network architecture. “+” is tensor concatenation.

Fig. 1: Point cloud networks consist of a set of modules, which
extract local features from the input point cloud iteratively and
hierarchically to calculate the final output.

been well-optimized, point cloud analytics require different
algorithms and are much less optimized.

Point cloud algorithms operate by iteratively extracting
features of each point. Conventional point cloud algorithms
use “hand-crafted” features such as FPFH [48] and SHOT [51].
Recent deep learning-based algorithms use learned features
and have generally out-performed conventional algorithms [20].
This paper thus focuses on deep learning-based algorithms.

We focus on deep learning-based algorithms that directly
manipulate raw point clouds. Other data representations such
as 2D projections of 3D points and voxelization suffer from
low accuracy and/or consume excessively high memory [35].

III. Motivation
We first introduce the general flow of point cloud algorithms

and identify key operators (Sec. III-A). We then characterize
point cloud algorithms on today’s hardware systems to under-
stand the algorithmic and execution bottlenecks (Sec. III-B),
which motivate the Mesorasi design.

III-A. Point Cloud Network Architecture

Module The key component in point cloud algorithms is
a module. Each module transforms an input point cloud to
an output point cloud, similar to how a convolution layer
transforms an input feature map to an output feature map
in conventional CNNs. A point cloud network assembles
different modules along with other common primitives such
as fully-connected (FC) layers. Fig. 1a and Fig. 1b illustrate
the architecture of two representative point cloud networks,
PointNet++ [43] and DGCNN [53], respectively.

Module Internals Each point p in a point cloud is
represented by a feature vector, which in the original point
cloud is simply the 3D coordinates of the point. The input
point cloud to a module is represented by an Nin×Min matrix,
where Nin denotes the number of input points and Min denotes
the input feature dimension. Similarly, the output point cloud
is represented by an Nout×Mout matrix, where Nout denotes the
number of output points and Mout denotes the output feature
dimension. Note that Nin and Nout need not be the same; neither
do Min and Mout.

Internally, each module extracts local features from the input
point cloud. This is achieved by iteratively operating on a small
neighborhood of input points, similar to how a convolution

1038



P0 P1 P2

P3

P6 P7

P4 P5

P8

Input Feature Map Output Feature Map

F

P0 P1 P2

P3

P6 P7

P4 P5

P8
N

Indexing
P9

P10

P11 P12 P13

P7

P4 P5

P8

P9

P10

P11 P12 P13

(a) Convolution in conventional CNNs can be thought of as two steps: 1) neighbor
search (N) by directly indexing adjacent pixels and 2) feature computation (F )
by a dot product.

P1

P2

P0

P3

P5

P6 P7

P4
P9

P11

P10P8

Input Point Cloud Output Point Cloud

N

P0 - P3 - P4 -

P5 - P6 - P7 -

P0 - P3 - P8 -

P9 - P10 -P11 -

Neighbor
Search

FA
P2

P2

P2 P2

P2 P2

P1

P1

P1 P1

P1 P1

(b) Point cloud networks consist of three main steps: neighbor search (N),
aggregation (A), and feature computation (F ). N requires an explicit neighbor
search; A normalizes neighbors to their centroid; F is an MLP with batched
inputs (i.e., shared MLP weights).

Fig. 2: Comparing a convolution layer in conventional CNNs
and a module in point cloud networks.

layer extracts local features of the input image through a sliding
window. Fig. 2 illustrates this analogy.

Specifically, each output point po is computed from an input
point pi in three steps — neighbor search (N), aggregation
(A), and feature computation (F ):

po = F (A(N(pi), pi)) (1)

where N returns K neighbors of pi, A aggregates the K
neighbors, and F operates on the aggregation (pi and its K
neighbors) to generate the output po.

The same formulation applies to the convolution operation
in conventional CNNs as well, as illustrated in Fig. 2. However,
the specifics of the three operations differ in point cloud
networks and CNNs. Understanding the differences is key
to identifying optimization opportunities.

Neighbor Search N in convolution returns K adjacent
pixels in a regular 3D tensor by simply indexing the input
feature map (K dictated by the convolution kernel volume). In
contrast, N in point cloud networks requires explicit neighbor
search to return the K nearest neighbors of pi, because the
points are irregularly scattered in the space. Similar to the
notion of a “stride” in convolution, the neighbor search might
be applied to only a subset of the input points, in which case
Nout would be smaller than Nin, as is the case in Fig. 2b.

Aggregation Given the K pixels, convolution in CNNs
directly operates on the raw pixel values. Thus, conventional
convolution skips the aggregation step.

In contrast, point cloud modules operate on the relative
value of each point in order to correlate a neighbor with its
centroid. For instance, a point p3 could be a neighbor of two
centroids p1 and p2 (as is the case in Fig. 2b). To differentiate
the different contributions of p3 to p1 and p2, p3 is normalized

to the two centroids by calculating the offsets p3 − p1 and
p3−p2 for subsequent computations.

Generally, for each neighbor pk ∈ N(pi), the aggregation
operation calculates the offset pk −pi (a 1×Min vector). All
K neighbors’ offsets form a Neighbor Feature Matrix (NFM)
of size K ×Min, effectively aggregating the neighbors of pi.

Feature Computation F in convolution is a dot product
between the pixel values in a window and the kernel weights.
In contrast, F in point cloud applies a multilayer perceptron
(MLP) to each row vector in the NFM. Critically, all K row
vectors share the same MLP; thus, the K input vectors are
batched into a matrix and the MLP becomes a matrix-matrix
product, transforming a K ×Min matrix to a K ×Mout matrix.

In the end, a reduction operation then reduces the K ×Mout
matrix to a 1×Mout vector, which becomes the feature vector
of an output point. A common choice for reduction is to, for
each column independently, take the max of the K rows.

Example Fig. 3 shows the first module in PointNet++ [43],
a classic point cloud network that many other networks build
upon. This module transforms a point cloud with 1024 (Nin)
points, each with a 3-D (Min) feature vector, to a point cloud
with 512 (Nout) points, each with an 128-D (Mout) feature
vector, indicating that the neighbor search is applied to only
512 input points. Each neighbor search returns 32 (K) neighbors
and forms a 32×3 NFM, which is processed by a MLP with 3
layers to generate a 32×128 matrix, which in turn is reduced
to a 1×128 feature vector for an output point. In this particular
network, all the NFMs also share the same MLP.

Note that while feature computation is not always MLP
and normalization is not always differencing from centroids,
they are the most widely used, both in classic networks (e.g.,
PointNet++ [43]) and recent ones (e.g., DGCNN [53]).

III-B. Performance Characterizations

We characterize point cloud networks on today’s systems
to understand the bottlenecks and optimization opportunities.
To that end, we profile the performance of five popular point
cloud networks on the mobile Pascal GPU on the Jetson TX2
development board [10], which is representative of state-of-
the-art mobile computing platforms. Please refer to Sec. VI
for a detailed experimental setup.

Time Distribution Fig. 4 shows the execution times of the
five networks, which range from 71 ms to 5,200 ms, clearly
infeasible for real-time deployment. The time would scale
proportionally as the input size grows.

Fig. 5 further decomposes the execution time into the three
components, i.e., Neighbor Search (N), Aggregation (A), and
Feature Computation (F ). N and F are the major performance
bottlenecks. While F consists of MLP operations that are well-
optimized, N (and A) is uniquely introduced in point cloud
networks. Even if F could be further accelerated on a DNN
accelerator, N has compute and data access patterns different
from matrix multiplications [59], and thus does not fit on a
DNN accelerator.

Critically, N , A, and F are serialized. Thus, they all
contribute to the critical path latency; optimizing one alone

1039



P3-P1

P3-P2

…

32 x 3

32 x 3

Mat 
Mul 1

Mat 
Mul 2

Mat 
Mul 3

3 x 64 64 x 64 64 x 128

…

32 x 128

32 x 128

R
eL

U

R
eL

U

R
eL

U

g(P3-P1)

Aggregation

g(P3-P2)

Neighbor 
Search

Reduction 
(Max)

512

MLP (g)

Neighbor
Index Table

P1 {P3, P4, …}
P2 {P3, P5, …}

…

(1024 points)
1024 x 3

P3

P1

P2

512 centroids, each
with 32 neighbors

512

Input Point
Cloud

P1’

P2’

(512 points)
512 x 128

Output Point
Cloud

Reduction 
(Max)

Neighbor 
Feature 

Matrix (NFM)

Fig. 3: The first module in PointNet++ [43]. The same MLP is shared across all the row vectors in a Neighbor Feature Matrix
(NFM) and also across different NFMs. Thus, MLPs in point cloud networks process batched inputs, effectively performing
matrix-matrix multiplications. The (shared) MLP weights are small in size, but the MLP activations are much larger. This
is because the same input point is normalized to different values in different neighborhoods before entering the MLP. For
instance, P3 is normalized to different offsets with respect to P1 and P2 as P3 is a neighbor of both P1 and P2. In point cloud
algorithms, most points are normalized to 20 to 100 centroids, proportionally increasing the MLP activation size.

PointNet++ (c)

PointNet++ (s)

DGCNN (c)

DGCNN (s)

F-PointNet10
1

10
2

10
3

Ti
m

e 
(m

s)

71.1
132.9

744.8
5200.8

141.4

Fig. 4: Latency of five point
cloud networks on the Pascal
GPU on TX2. Results are av-
eraged over 100 executions,
and the error bars denote one
standard deviation.

PointNet++ (c)

PointNet++ (s)

DGCNN (c)

DGCNN (s)

F-PointNet0

25

50

75

100

P
er

ce
nt

ag
e 

(%
)

Neighbor Search
Feature Computation

Aggregation
Others

Fig. 5: Time distribution
across the three main point
cloud operations (N , A, and
F ). The data is averaged on
the mobile Pascal GPU on
TX2 over 100 executions.

0 10 20 30 40 500
100
200
300 PointNet++

0 10 20 30 40 50
Num. of Neighborhoods

0
100
200
300

N
um

. o
f P

oi
nt

s
DGCNN

Fig. 6: Distribution of the
number of points (y-axis)
that occur in a certain num-
ber of neighborhoods (x-
axis). We profile 32 inputs
(curves).

YO
LO

v2

Alex
Net

ResN
et-

50

Po
int

Net+
+ (c

)

Po
int

Net+
+ (s

)

DGCNN (c
)

DGCNN (s
)

F-P
oin

tNet
100

101

102

103

M
AC

 O
ps

 (G
OP

S)

CNNs Point Cloud Algo.

Fig. 7: MAC operation compar-
ison between point cloud net-
works (130K input points per
frame [24]) and conventional
CNNs (nearly 130K pixels per
frame).

would not lead to universal speedups. The serialization is
inherent to today’s point cloud algorithms: in order to extract
local features of a point (F ), the point must be aggregated with
its neighbors (A), which in turn requires neighbor search (N).
Mesorasi’s algorithm breaks this serialized execution chain,
allowing F and N to be overlapped.

Memory Analysis Point cloud networks have large memory
footprints. While the MLP weights are small and are shared
across input NFMs (Fig. 3), the intermediate (inter-layer)
activations in the MLP are excessive in size.

The “Original” category in Fig. 10 shows the distribution
of each MLP layer’s output size across the five networks. The
data is shown as a violin plot, where the high and low ticks
represent the largest and smallest layer output size, respectively,
and the width of the violin represents the density at a particular
size value (y-axis). The layer output usually exceeds 2 MB, and
could be as large as 32 MB, much greater than a typical on-chip
memory size in today’s mobile GPUs or DNN accelerators. The
large activation sizes would lead to frequent DRAM accesses
and high energy consumption.

The large activation size is fundamental to point cloud
algorithms. This is because an input point usually belongs to

many overlapped neighborhoods, and thus must be normalized
to different values, one for each neighborhood. Fig. 2b shows
a concrete example, where P3 is a neighbor of both P1 and
P2; the aggregation operation normalizes P3 to P1 and P2,
leading to two different relative values (P3 - P1 and P3 -
P2) that participate in feature computation, increasing the
activation size. This is in contrast to convolutions, where pixels
in overlapped neighborhoods (windows) are directly reused in
feature computation (e.g., P4 in Fig. 2a).

We use two networks, DGCNN [43] and PointNet++ [53], to
explain the large activation sizes. Fig. 6 shows the distribution
of the number of neighborhoods each point is in. Each curve
corresponds to an input point cloud, and each (x, y) point
on a curve denotes the number of points (y) that occur in a
certain number of neighborhoods (x). In PointNet++, over half
occur in more than 30 neighborhoods; in DGCNN, over half
occurs in 20 neighborhoods. Since the same point is normalized
to different values in different neighborhoods, this bloats the
MLP’s intermediate activations.

Compute Cost The large activations lead to high multiply-
and-accumulate (MACs) operations. Fig. 7 compares the
number of MAC operations in three classic CNNs with that in

1040



MLP (g)

Mat
Mul 1

Mat
Mul 2

Mat
Mul 3

3 x 64 64 x 64 64 x 128

R
eL

U

R
eL

U

R
eL

U

Neighbor 
Search

1024 x 128

P3

P1

P2

g (P3)

g (P1)

Neighbor
Index Table

P1 {P3, P4, …}
P2 {P3, P5, …}

…

Aggregation …

32 x 128

32 x 128

g(P3) - g(P1)

g(P3) - g(P2)

512

Point Feature Table

Reduction
(Max)

P1’

P2’

(512 points)
512 x 128

Output Point
Cloud

Reduction
(Max)

(1024 points)
1024 x 3

Input Point
Cloud

g (P2)

Fig. 8: The delayed-aggregation algorithm applied to the first module in PointNet++. The MLP and neighbor search are
executed in parallel, effectively delaying aggregation after feature computation. The input size of the MLP is much smaller
(input point cloud as opposed to the aggregated NFMs), which significantly reduces the MAC operations and the intermediate
activation sizes. Aggregation now operates on the output feature space (128-D in this case), whereas it previously operates on
the input feature space (3-D in this case). Thus, the aggregation time increases and emerges as a new performance bottleneck.

the feature computation of point cloud networks. To use the
same “resolution” for a fair comparison, the input point cloud
has 130,000 points (e.g., from the widely-used KITTI Odometry
dataset [24]) and the CNN input has a similar amount of pixels.
In feature computation alone, point cloud networks have an
order of magnitude higher MAC counts than conventional
CNNs. Mesorasi’s algorithm reduces both the memory accesses
and MAC counts in feature computation.

Summary Today’s point cloud algorithms extract local
features of a point by aggregating the point with its neighbors.
The aggregation happens before feature computation, which
leads to two fundamental inefficiencies:
• The two major performance bottlenecks, neighbor search

and feature computation, are serialized.
• Feature computation operates on aggregated neighbor

points, leading to high memory and compute cost.

IV. Delayed-Aggregation Algorithm
We introduce delayed-aggregation, a primitive for building

efficient point cloud networks (Sec. IV-A). Delayed-aggregation
improves the compute and memory efficiencies of point cloud
networks without degrading accuracy (Sec. IV-B). We show
that aggregation emerges as a new bottleneck in new networks,
motivating dedicated hardware support (Sec. IV-C).

IV-A. Algorithm

We propose a new framework for building efficient point
cloud algorithms. The central idea is to delay aggregation until
after feature computation so that features are extracted on
individual input points rather than on aggregated neighbors.
Delayed-aggregation has two benefits. First, it allows neighbor
search and feature computation, the two time-consuming com-
ponents, to be executed in parallel. Second, feature computation
operates on input points rather than aggregated neighbors,
reducing the compute and memory costs.

Delayed-Aggregation The key insight is that feature
extraction (F ) is approximately distributive over aggregation
(A). For an input point pi and its corresponding output po:

po = F (A(N(pi), pi)) ≈A(F (N(pi)), F (pi)) (2)

Fundamentally, Equ. 2 holds because the MLP in F is
approximately distributive over subtraction in A. Specifically,
applying an MLP to the difference of two matrices is approxi-
mately equivalent to applying an MLP to both matrices and
then subtract the two resulting matrices. The approximation is
introduced by the non-linearity in the MLP (e.g., ReLU):

φ(φ(

p1−pi
...

pk −pi

×W1)×W2) ≈

φ(φ(

p1
...
pk

×W1×W2))−φ(φ(

pi
...
pi

×W1×W2)) (3)

where p1, ...,pk are neighbors of pi, W1 and W2 are the two
weight matrices in the MLP (assuming one hidden layer), and φ
is the non-linear activation function. Without φ, the distribution
of MLP over subtraction is precise. In actual implementation,
the computation on [pi ... pi]ᵀ is simplified to operating on
pi once and scattering the result K times.

Critically, applying this distribution allows us to decouple
N with F . As shown in Equ. 2 and Equ. 3, F now operates
on original input points, i.e., pi and N(pi) (a subset of the
input points, too) rather than the normalized point values (pk−

pi), which requires neighbor search results. As a result, we
could first apply feature computation on all input points. The
computed features are then aggregated later.

Walk-Through We use the first module in PointNet++ as
an example to walk through the new algorithm. This module
consumes 1024 (Nin) input points, among which 512 undergo
neighbor search. Thus, the module produces 512 (Nout) output
points. The input feature dimension is 3 (Min) and the output
feature dimension is 128 (Mout). Fig. 8 shows this module
implemented with delayed-aggregation.

1041



PointNet++ (c)

PointNet++ (s)
DGCNN (c)

DGCNN (s)
F-PointNet

0

20

40

60

80

100

M
A

C
 O

ps
R

ed
uc

tio
n 

(%
)

Fig. 9: MAC operation reduction in the
MLP by delayed-aggregation. The MAC
count reductions come from directly op-
erating on the input points as opposed to
aggregated neighbors.

PointNet++ (c)

PointNet++ (s)
DGCNN (c)

DGCNN (s)
F-PointNet2

-9
2

-6
2

-3
2

0
2

3
2

6

2
-9

2
-8

2
-7

2
-6

2
-5

2
-4

2
-3

2
-2

2
-1

2
0

2
1

2
2

2
3

2
4

2
5

D
at

a 
S

iz
e 

(M
B

)

Original Delayed-Aggr.

Fig. 10: Layer output size distribution as
a violin plot with and without delayed-
aggregation. High and low ticks denote
the largest and smallest layer outputs,
respectively.

Neighbor
Search

Aggregation Feature
Computation

0

5

10

15

20

25

30

Ti
m

e 
(m

se
c.

)

9.8

0.8

24.9

9.5

3.9
7.8

Original Delayed-Aggr.

Fig. 11: Time distribution across N ,
A, and F in PointNet++ (s) with and
without delayed-aggregation. Note that
delayed-aggregation would also allow N
and F to be executed in parallel.

We first compute features (F ) from all 1024 points in the
input point cloud and store the results in the Point Feature
Table (PFT), a 1024×128 matrix. Every PFT entry contains the
feature vector of an input point. Meanwhile, neighbor searches
(N) are executed in parallel on the input point cloud, each
returning 32 neighbors of a centroid. The results of neighbor
search are stored in a Neighbor Index Table (NIT), a 512×32
matrix. Each NIT entry contains the neighbor indices of an input
point. In the end, the aggregation operation (A) aggregates
features in the PFT using the neighbor information in the NIT.
Note that it is the features that are being aggregated, not the
original points.

Each aggregated matrix (32× 128) is reduced to the final
feature vector (1×128) of an output point. If reduction is imple-
mented by a max operation as is the common case, aggregation
could further be delayed after reduction because subtraction is
distributive over max: max(p1−pi,p2−pi) = max(p1,p2)−pi.
This optimization avoids scattering pi, reduces the subtraction
cost, and is mathematically precise.

IV-B. First-Order Efficiency Analysis
Compared with the original implementation of the same

module in Fig. 3, the delayed-aggregation algorithm provides
three benefits. First, neighbor search and the MLP are now
executed in parallel, hiding the latencies of the slower path.

Second, we significantly reduce the MAC operations in the
MLP. In this module, the original algorithm executes MLP
on 512 32 × 3 matrices while the new algorithm executes
MLP only on one 1024× 3 matrix. Fig. 9 shows the MAC
operation reductions across all five networks. On average,
delayed-aggregation reduces the MAC counts by 68%.

Third, delayed-aggregation also reduces the memory traffic
because the MLP input is much smaller. While the actual
memory traffic reduction is tied to the hardware architecture,
as a first-order estimation Fig. 10 compares the distribution
of per-layer output size with and without delayed-aggregation.
The data is shown as a violin plot. Delayed-aggregation reduces
the layer output sizes from 8 MB˜32 MB to 512 KB˜1 MB,
amenable to be buffered completely on-chip.

PointNet++
(c)

PointNet++
(s)

DGCNN
(c)

DGCNN
(s)

F-PointNet AVG.10
-1

10
0

10
1

Ti
m

e 
(m

se
c.

)
0

20

40

R
el

at
iv

e 
Ti

m
e 

(%
)

10.4 15.2

Original
Delay-Aggr.

Original
Delay-Aggr.

Fig. 12: Both absolute (left y-axis) and relative (right y-axis)
aggregation times increase with delayed-aggregation.

By directly extracting features from the input points, our
algorithm unlocks the inherent data reuse opportunities in point
cloud. Specifically in this example, P3 is a neighbor of both
P1 and P2, but could not be reused in feature computation by
the original algorithm because P3’s normalized values with
respect to P1 and P2 are different. In contrast, the MLP in our
algorithm directly operates on P1, whose feature is then reused
in aggregation, implicitly reusing P1.

IV-C. Bottleneck Analysis

While delayed-aggregation reduces the compute costs and
memory accesses, it also significantly increases the aggregation
time. Using PointNet++ as an example, Fig. 11 compares the
execution time distribution across the three operations (N ,
A, and F ) with and without delayed-aggregation. The error
bars denote one standard deviation in the measurement. The
feature extraction time significantly decreases, and the neighbor
search time roughly stays the same — both are expected. The
aggregation time, however, significantly increases.

Fig. 12 generalizes the conclusion across the five networks.
The figure compares the absolute (left y-axis) and relative (right
y-axis) aggregation time in the original and new algorithms.
The aggregation time consistently increases in all five networks.
Since neighbor search and feature computation are now
executed in parallel, aggregation overhead contributes even
more significantly to the overall execution time. On average,
the aggregation time increases from 3% to 24%.

1042



DNN Accelerator (NPU)

BN/ReLU/
Maxpooling

CPU
Reduction 

(Max)

GPU

Point Feature 
Buffer

Aggregation 
Logic

Global  
Buffer

(Weights
/FMaps)

Neighbor 
Index Buffer

D
R

AM Input Point 
Cloud

MLP
Kernels

MLP Layer 
Activations

Systolic MAC
Unit Array

Neighbor 
Index Table

DMA

MCU

Fig. 13: The Mesorasi SoC builds on top of today’s SoCs
consisting of a GPU and a DNN accelerator (NPU). Neighbor
search executes on the GPU and feature extraction executes
on the NPU. Mesorasi augments the NPU with an aggregation
unit (AU) to efficiently execute the aggregation operation. The
AU structures are shaded (colored).

Aggregation time increases mainly because aggregation
involves irregular gather operations [30], which now operate
on a much larger working set with delayed-aggregation. For
instance, in PointNet++’s first module (Fig. 8), aggregation
originally gathers from a 12 KB matrix but now gathers from
a 512 KB matrix, which is much larger than the L1 cache size
(48 KB – 96 KB2) in the mobile Pascal GPU on TX2.

The working set size increases significantly because aggre-
gation in new algorithms gathers data from the PFT, whose
dimension is Nin×Mout, whereas the original algorithms gather
data from the input point matrix, whose dimension is Nin×Min.
Mout is usually several times greater than Min in order to extract
higher-dimensional features. In the example above, Mout is 128-
D whereas Min is 3-D.

V. Architectural Support
This section describes Mesorasi, our hardware design

that efficiently executes point cloud algorithms developed
using delayed-aggregation. Mesorasi extends existing DNN
accelerators with minor augmentations while leaving the rest
of the SoC untouched. We start from an overview of Mesorasi
and its workflow (Sec. V-A), followed by a detailed description
of the architecture support (Sec. V-B).

V-A. Overall Design

We assume a baseline SoC that incorporates a GPU and
an NPU, as with emerging mobile SoCs such as Nvidia
Xavier [11], Apple A13 [1], and Microsoft HPU [14]. Point
cloud algorithms are a few times faster when an NPU is
available to accelerate MLP compared to running only on
the GPU (Sec. VII-D). Thus, an NPU-enabled SoC represents
the trend of the industry and is a more optimized baseline.

2To our best knowledge, Nvidia does not publish the L1 cache size for the
mobile Pascal GPU in TX2 (GP10B [9]). We estimate the size based on the
L1 cache size per SM in other Pascal GPU chips [13] and the number of SMs
in the mobile Pascal GPU [10]

Design Fig. 13 shows how Mesorasi augments the NPU
in a generic SoC. In Mesorasi, the GPU executes neighbor
search (N) and the NPU executes feature extraction (F ), i.e.,
the MLP. In addition, Mesorasi augments the NPU with an
Aggregation Unit (AU) to efficiently execute the aggregation
operation (A). As shown in Sec. IV-C, aggregation becomes
a bottleneck in our new algorithms and is inefficient on the
GPU. AU minimally extends a generic NPU architecture with
a set of principled memory structures and datapaths.

Mesorasi maps N to the GPU because neighbor search is
highly parallel, but does not map to the specialized datapath of
an NPU. Alternatively, an SoC could use a dedicated neighbor
search engine (NSE) [31], [59]. We use the GPU because it is
prevalent in today’s SoCs and thus provides a concrete context
to describe our design. We later show that delayed-aggregation
could achieve even higher speedups in a futurist SoC where
an NSE is available to accelerate neighbor search (Sec. VII-E).
In either case, Mesorasi does not modify the internals of the
GPU or the NSE.

Work Flow Point cloud algorithms with delayed-
aggregation work on Mesorasi as follows. The input point
cloud is initially stored in the DRAM. The CPU configures
and triggers the GPU and the NPU simultaneously, both of
which read the input point cloud. The GPU executes the KNN
search and generates the Neighbor Index Table (NIT), which
gets stored back to the DRAM. Meanwhile, the NPU computes
features for input points and generates the Point Feature Table
(PFT). The AU in NPU combines the PFT with the NIT from
the memory for aggregation and reduction, and eventually
generates the output of the current module.

In some algorithms (e.g., PointNet++), neighbor searches
in all modules search in the original 3-D coordinate space,
while in other algorithms (e.g., DGCNN) the neighbor search
in module i searches in the output feature space of module
(i−1). In the latter case, the current module’s output is written
back to the memory for the GPU to read in the next module.

Our design modifies only the NPU while leaving other SoC
components untouched. This design maintains the modularity
of existing SoCs, broadening the applicability. We now describe
the AU augmentation in NPU in detail.

V-B. Aggregation Unit in NPU

Aggregation requires irregular gather operations that are
inefficient on GPUs. The key to our architectural support is the
specialized memory structures co-designed with customized
data structure partitioning, which provide efficient data accesses
for aggregation with a little area overhead.

Algorithmically, aggregation iterates over the NIT’s Nout
entries until NIT is exhausted. Each NIT entry contains the K
neighbor indices of a centroid p. The aggregation operation
first gathers the K corresponding entries (feature vectors) from
the PFT (Nin×Mout). The K feature vectors are then reduced
to one (1×Mout) vector, which subtracts p’s feature vector to
generate the output feature for p.

Fig. 14 shows the detailed design of the aggregation unit.
The NIT is stored in an SRAM, which is doubled-buffered in

1043



Neighbor Index Table
(Double-buffered from DRAM; each 
entry is Centroid: Neighbor indices)

Address 
Generation

Reduction 
(Max)

Point Feature Table
(B ports, B banks; connected 

to NPU global buffer)

Bank 1 1 Wr

B …

..

2:
3,
4,
6,
…

9:
4,
7,
8,
…

900:
989,
990,
999,
…

1:
2,
3,
4,
…

15:
12,
27,
48,
…

Shift Registers
(Mout Wr each)

to NPU
Global Buffer

B x 1 Wr

1 Wr
1 Wr

…

M
U

X

Sub (-)…

…
1 Wr

(Stores a centroid’s
feature vector)

Fig. 14: Aggregation unit. The NIT buffer is double-buffered from the DRAM. The Address Generation logic simply fetches
addresses already buffered in the NIT and sends them to the PFT buffer controller. The PFT buffer is organized as B independently
addressed single-ported SRAMs. It could be thought of as an optimized version of a traditional B-banked, B-ported SRAM,
because it does not need the crossbar that routes data from banks to ports (but does need the crossbar to route an address to the
corresponding bank). The PFT buffer is connected to the NPU’s global buffer. Each bank produces one word (Wr) per cycle.
The shift registers hold up to Mout words, where Mout is the output feature vector size. The top shift register holds the result of
reduction, and the bottom shift register holds the feature vector of a centroid.

order to limit the on-chip memory size. The PFT is stored in a
separate on-chip SRAM connected to the NPU’s global buffer
(which stores the MLP weights and input/output). This allows
the output of feature extraction to be directly transferred to
the PFT buffer without going through the DRAM. Similarly,
the aggregation output is directly written back to the NPU’s
global buffer, as the aggregation output of the current module
is the input to the feature extraction in the next module.

To process each NIT entry, the Address Generation Unit
(AGU) uses the K indices to generate K addresses to index into
the PFT buffer. Due to the large read bandwidth requirement,
the PFT buffer is divided into B independently addressable
banks, each of which produces 1 word per cycle.

Each cycle, the PFT buffer produces B words, which enters
the reduction unit. In our current design, the reduction unit
implements the max logic as is the case in today’s point cloud
algorithms. The output of the max unit, i.e., the max of the B
words, enters a shift register (the top one in Fig. 14). Ideally,
the number of banks B is the same as the number of neighbors
K and the K addresses fall into different banks. If so, the shift
register is populated with the 1×Mout vector after Mout cycles.
The AGU then reads p’s feature vector from the PFT buffer and
stores it in another shift register (the bottom one in Fig. 14).
The two shift registers perform an element-wise subtraction as
required by aggregation. The same process continues until the
entire NIT is exhausted.

Multi-Round Grouping In reality, reading the neighbor
feature vectors takes more than Mout cycles because of two
reasons. First, K could be greater than B. The number of banks
B is limited by the peripheral circuits overhead, which increases
as B increases. Second, some of the K addresses could fall
into the same bank, causing bank conflicts. We empirically
find that an LSB-interleaving reduces bank conflicts, but it
is impossible to completely avoid bank conflict at runtime,
because the data access patterns in point cloud are irregular
and could not be statically calculated – unlike conventional
DNNs and other regular kernels.

We use a simple multi-round design to handle both non-ideal
scenarios. Each round the AGU would attempt to identify as
many unconflicted addresses as possible, which is achieved
by the AGU logic examining each address modulo B. The
unconflicted addresses are issued to the PFT buffer, whose
output enters the max unit to generate a temporary output stored
in the shift register. The data in the shift register would be
combined with the PFT output in the next round for reduction.
This process continues until all the addresses in an NIT buffer
entry are processed.

An alternative way to resolve bank-conflict would be to
simply ignore conflicted banks, essentially approximating the
aggregation operation. We leave it to future work to explore
this optimization and its impact on the overall accuracy.

PFT Buffer Design One could think of the PFT buffer
as a B-banked, B-ported SRAM. Traditionally, heavily ported
and banked SRAMs are area inefficient due to the crossbar
that routes each bank’s output to the corresponding issuing
port [54]. However, our PFT buffer is much simplified without
the crossbar. This is by leveraging a key observation that
the outputs of all the PFT banks are consumed by the max
unit, which executes a commutative operation, i.e., max(a,b) =

max(b,a). Thus, the output of each bank need not be routed
to the issuing port so long as the requested data is correctly
produced. This design optimization greatly reduces the area
overhead (Sec. VII-A).

One might be tempted to reuse the NPU’s global buffer
for the PFT buffer to save chip area. After all, the PFT is
MLP’s output, which is stored in the global buffer. However,
physically sharing the two SRAM structures is difficult, mainly
because of their different design requirements. Global buffer
contains MLP weights and layer inputs, accesses to which have
regular patterns. As a result, NPU global buffers are usually
designed with very few ports (e.g., one) [3], [29] while using
a wide word. In contrast, accesses to the PFT are irregular as
the neighbors of a centroid could be arbitrary spread in the
PFT. Thus, the PFT buffer must be heavily-ported in order to

1044



N
ou

t

Mout

PFT Buffer Size = Nout x (Mout / 4)

……… Reduction 
(Max)…

Fig. 15: Column-major partitioning of PFT to reduce PFT
buffer size (4 partitions in this example). Each time the PFT
buffer is filled with only one partition. Since reduction (max)
is applied to each column independently, the column-major
partitioning ensures that all the neighbors of a centroid are
present in the PFT buffer for aggregation.

sustain a high bandwidth requirement.
PFT Partitioning To hold the entire PFT, the buffer must

hold Nout ×Mout features, which could be as large as 0.75 MB
in some networks (e.g., DGCNN). Since the PFT buffer adds
area overhead, we would like to minimize its size.

We partition the PFT to reduce the PFT buffer size. Each
time, the PFT buffer is filled with only one partition. One
straightforward strategy is the row-major partitioning, where
the PFT buffer holds only a few rows of the PFT. However,
since a centroid’s neighbors could be arbitrarily spread across
different PFT rows, row-major partitioning does not guarantee
that all the neighbors of a centroid are present in the PFT
buffer (i.e., in the same partition) for aggregation.

Instead, our design partitions the PFT column-wise, where
each partition contains several columns of the PFT. Fig. 15
illustrates the idea with 4 partitions. In this way, aggregation
of a centroid is divided into four steps, each step aggregating
only one partition. The column-major partitioning ensures that,
within each partition, the neighbors of a centroid are available
in the PFT buffer. Since reductions (max) of different columns
are independent, the four intermediate reduction results can
simply be concatenated in the end.

With column-wise partitioning, each NIT entry is accessed
multiples times—once per aggregation step. Thus, a smaller
PFT buffer, while reducing the area overhead, would also
increase the energy overhead. We later quantify this resource
vs. energy trade-off (Sec. VII-F).

VI. Experimental Setup

Hardware Implementation We develop RTL implementa-
tions for the NPU and its augmentations for the aggregation
unit (AU). The NPU is based on the systolic array architecture,
and consists of a 16×16 PE array. Each PE consists of two
input registers, a MAC unit with an accumulator register, and
simple trivial control logic. This is identical to the PE in the
TPU [29]. Recall that MLPs in point cloud networks process
batched inputs (Fig. 3), so the MLPs perform matrix-matrix
product that can be efficiently implemented on a systolic array.

TABLE I: Evaluation benchmarks.

Application
Domains Algorithm Dataset Year

Classification

PointNet++ (c)
DGCNN (c)
LDGCNN
DensePoint

ModelNet40

2017
2019
2019
2019

Segmentation PointNet++ (s)
DGCNN (s) ShapeNet 2017

2019

Detection F-PointNet KITTI 2018

The NPU’s global buffer is sized at 1.5 MB and is banked at
a 128 KB granularity.

The PFT buffer in the AU is sized at 64 KB with 32 banks.
The NIT buffer is doubled-buffered; each buffer is implemented
as one SRAM bank sized at 12 KB and holds 128 entries. The
NIT buffer produces one entry per cycle. Each entry is 98 Bytes,
accommodating 64 neighbor indices (12 bits each). Each of
the two shift registers is implemented as 256 flip-flops (4-byte
each). The datapath mainly consists of 1) one 33-input max
unit and 256 subtraction units in the reduction unit, and 2) 32
32-input MUXes in the AGU.

The design is clocked at 1 GHz. The RTL is implemented
using Synposys synthesis and Cadence layout tools in TSMC
16nm FinFET technology, with SRAMs generated by an
Arm memory compiler. Power is simulated using Synopsys
PrimeTimePX, with fully annotated switching activity.

Experimental Methodology The latency and energy of the
NPU (and its augmentation) are obtained from post-synthesis
results of the RTL design. We model the GPU after the Pascal
mobile GPU in the Nvidia Parker SoC hosted on the Jetson
TX2 development board [10]. The SoC is fabricated in a 16
nm technology node, same as our NPU. We directly measure
the GPU execution time as well as the kernel launch time.
The GPU energy is directly measured using the built-in power
sensing circuity on TX2.

The DRAM parameters are modeled after Micron 16 Gb
LPDDR3-1600 (4 channels) according to its datasheet [7].
DRAM energy is calculated using Micron’s System Power
Calculators [8] using the memory traffic, which includes: 1)
GPU reading input point cloud, 2) NPU accessing MLP kernels
and activations each layer, and 3) GPU writing NIT and NPU
reading NIT. Overall, the DRAM energy per bit is about 70×
of that of SRAM, matching prior work [23], [61].

The system energy is the aggregation of GPU, NPU, and
DRAM. The overall latency is sum of GPU, NPU, and DRAM
minus: 1) double buffering in the NPU, and 2) parallel execution
between neighbor search on GPU and feature computation on
NPU. Due to double-buffering, the overall latency is dominated
by the compute latency, not memory.

Software Setup Tbl. I lists the point cloud networks we
use, which cover different domains for point cloud analytics
including object classification, segmentation, and detection.
The networks cover both classic and recent ones (2019).

For classification, we use four networks: PointNet++ [43],
DGCNN [53], LDGCNN [65], and DensePoint [34]; we use

1045



the ModelNet40 [58] dataset. We report the standard overall
accuracy metric. To evaluate segmentation, we use the variants
of PointNet++ and DGCNN specifically built for segmentation,
and use the ShapeNet dataset [19]. We report the standard
mean Intersection-over-Unit (mIoU) accuracy metric. Finally,
we use F-PointNet [41] as the object detection network. We
use the KITTI dataset [24] and report the geometric mean of
the IoU metric (BEV) across its classes.

We optimize the author-released open-source version of
these networks to obtain stronger software baselines. We: 1)
removed redundant data duplications introduced by tf.tile;
2) accelerated the CPU implementation of an important
kernel, 3D Interpretation (three interpolate), with a GPU
implementation; 3) replaced the Farthest Point Sampling with
random sampling in PointNet++ with little accuracy loss;
4) replaced the Grouping operation (group point) with
an optimized implementation (tf.gather) to improve the
efficiency of grouping/aggregation. On TX2, our baseline
networks are 2.2× faster than the open-source versions.

Baseline We mainly compare with a generic NPU+GPU
SoC without any Mesorasi-related optimizations. Compared to
the baseline, our proposal improves both the software, i.e., the
delayed-aggregation algorithm as well as hardware, i.e., the
aggregation unit (AU) augmentations to the NPU.

Variants To decouple the contributions of our algorithm
and hardware, we present two different Mesorasi variants:
• Mesorasi-SW: delayed-aggregation without AU support.

Neighbor search and aggregation execute on the GPU;
feature computation executes on the NPU.

• Mesorasi-HW: delayed-aggregation with AU support.
Neighbor search executes on the GPU; aggregation and
feature computation execute on the NPU.

VII. Evaluation

We first show Mesorasi adds little hardware overhead
(Sec. VII-A) while achieving comparable accuracy against
original point cloud networks (Sec. VII-B). We then demon-
strate the efficiency gains of Mesorasi on different hardware
platforms (Sec. VII-C – Sec. VII-E), followed by sensitivity
studies (Sec. VII-F).

VII-A. Area Overhead

Mesorasi introduces only minimal area overhead with the
minor AU augmentations. The main overhead comes from
the 88 KB additional SRAM required for the PFT buffer and
the NIT buffer. Compared to the baseline NPU, the additional
hardware introduces less than 3.8% area overhead (0.059 mm2),
which is even more negligible compared to the entire SoC area
(e.g., 350 mm2 for Nvidia Xavier [12] and 99 mm2 for Apple
A13 [1]).

Our custom-designed PFT buffer avoids the crossbar connect-
ing the banks to the read ports by exploiting the algorithmic
characteristics (Sec. V-B). Since our PFT buffer is heavily
banked (32) and ported (32) and each bank is small in size (2
KB), the additional area overhead introduced by the crossbar
would have been high. Specifically, the area of the PFT buffer

PointNet++ (c)
PointNet++ (s)

DGCNN (c)
DGCNN (s)

F-PointNet
LDGCNN

DensePoint
40

60

80

100

A
cc

ur
ac

y 
(%

) 90.8
84.0

91.5
84.9

71.3

92.9 92.689.9
84.0

91.5
84.2

72.5

92.3 93.2

Original Mesorasi

Fig. 16: The accuracy comparison between networks trained
with delayed-aggregation and the original networks.

PointNet++ (c)

PointNet++ (s)
DGCNN (c)

DGCNN (s)
F-PointNet

LDGCNN
DensePoint

AVG.
0.0

0.5

1.0

1.5

2.0

S
pe

ed
up

0

25

50

75

100

E
ne

rg
y

R
ed

uc
tio

n 
(%

)

Ltd. Mesorasi (Speedup)
Mesorasi (Speedup)

Ltd. Mesorasi (Energy)
Mesorasi (Energy)

Fig. 17: Speedup and energy reduction of the delayed-
aggregation algorithm and the limited version of the algorithm
on the mobile Pascal GPU on TX2.

now is 0.031 mm2, but the crossbar area would be 0.064 mm2,
which is now avoided.

VII-B. Accuracy

Overall, Mesorasi matches or out-performs the original algo-
rithms. We train all seven networks with delayed-aggregation
from scratch until the accuracy converges. Fig. 16 compares
our accuracy with that of the baseline models, which we choose
the better of the reported accuracies in the original papers or
accuracies from training their released code. Overall, Mesorasi
leads to at most 0.9% accuracy loss in the case of PointNet++

(c) and up to 1.2% accuracy gain in the case of F-PointNet.
This shows that, while delayed-aggregation approximates the
original algorithms, the accuracy loss could be recovered from
training. Delayed-aggregation could be used as a primitive to
build accurate point cloud algorithms.

We find that fine-tuning the model weights trained on the
original networks has similar accuracies as retraining from
scratch. However, directly using the original weights without
retraining leads to a few percentages of accuracy loss, which
is more significant when the non-linear layers use batch
normalization, which perturbs the distributive property of matrix
multiplication over subtraction more than ReLU.

VII-C. Results on GPU

We first show that our delayed-aggregation algorithm readily
achieves significant speedups on today’s GPU without hardware
support. Fig. 17 shows the speedup and energy reduction of
Mesorasi on the Pascal GPU on TX2.

As a comparison, we also show the results of a limited
version of delayed-aggregation, where only the matrix-vector
multiplication (MVM) part of an MLP is hoisted before
aggregation (Ltd-Mesorasi). The limited delayed-aggregation

1046



algorithm is inspired by certain Graph Neural Network (GNN)
implementations such as GCN [4], [22], [52] and GraphSage [5].
Note that by hoisting only the MVM rather than the entire
MLP, Ltd-Mesorasi is precise since MVM is linear. We refer
interested readers to the wiki page of our code repository [6]
for a detailed comparison between our delayed-aggregation
and GNN’s limited delayed-aggregation.

On average, Mesorasi achieves 1.6× speedup and 51.1%
energy reduction compared to the original algorithms. In
comparison, the limited delayed-aggregation algorithm achieves
only 1.3× speedup and 28.3% energy reduction. Directly
comparing with Ltd-Mesorasi, Mesorasi has 1.3× speedup
and 25.9% energy reduction. This is because the limited delay-
aggregation, in order to be precise, could be applied to only
the first MLP layer. By being approximate, Mesorasi does
not have this constraint and thus enables larger benefits; the
accuracy loss could be recovered through fine-tuning (Fig. 16).
Mesorasi has similar performance as Ltd-Mesorasi on DGCNN
(c), LDGCNN, and DensePoint, because these three networks
have only one MLP layer per module.

Although delayed-aggregation allows neighbor search and
feature extraction to be executed in parallel, and our implemen-
tation does exploit the concurrent kernel execution in CUDA,
we find that neighbor search and feature extraction in actual
executions are rarely overlapped. Further investigation shows
that this is because the available resources on the Pascal GPU
on TX2 are not sufficient to allow both kernels to execute
concurrently. We expect the speedup to be even higher on
more powerful mobile GPUs in the future.

Overall, networks in which feature computation contributes
more heavily to the overall time, such as PointNet++ (c) and
F-PointNet (Fig. 5), have higher MAC operation reductions
(Fig. 9), and thus have higher speedups and energy reductions.
This confirms that the improvements are mainly attributed to
optimizing the MLPs in feature computation.

VII-D. Speedup and Energy Reduction

Mesorasi also improves the performance and energy con-
sumption of emerging mobile SoCs with a dedicated NPU.
Fig. 18a and Fig. 18b show the speedup and the normalized
energy consumption of the two Mesorasi variants over the
NPU+GPU baseline, respectively.

Software The delayed-aggregation algorithm alone without
AU support, i.e., Mesorasi-SW, has a 1.3× speedup and 22%
energy saving over the baseline. The main contributor of the
improvements is optimizing the MLPs in feature computation.
Fig. 19a shows the speedups and energy savings of the delayed-
aggregation algorithm on feature computation. On average, the
feature computation time is reduced by 5.1× and the energy
consumption is reduced by 76.3%.

The large speedup on feature computation does not translate
to similar overall speedup, because feature computation time
has already been significantly reduced by the NPU, leaving
less room for improvement. In fact, our GPU+NPU baseline
is about 1.8× faster (Fig. 18a) and consumes 70% less energy
compared to the GPU (Fig. 18b). The increased workload of

PointNet++ (c)

PointNet++ (s)
DGCNN (c)

DGCNN (s)
F-PointNet

LDGCNN
DensePoint

AVG.
0

1

2

S
pe

ed
up

2.2 3.6Our Baseline

GPU Mesorasi-SW Mesorasi-HW

(a) Speedup. Higher is better.

PointNet++ (c)

PointNet++ (s)
DGCNN (c)

DGCNN (s)
F-PointNet

LDGCNN
DensePoint

AVG.
0

1

2

3

N
or

n.
 E

ne
rg

y

4.7 3.6Our Baseline

GPU Mesorasi-SW Mesorasi-HW

(b) Normalized energy. Lower is better.

Fig. 18: Speedup and energy reduction of Mesorasi-SW and
Mesorasi-HW over the baseline (GPU+NPU), which is twice
as fast and consumes one-third of the energy compared to the
GPU, indicating an optimized baseline to begin with.

Po
in

tN
et

++
 (c

)
Po

in
tN

et
++

 (s
)

DG
CN

N 
(c

)
DG

CN
N 

(s
)

F-
Po

in
tN

et
LD

G
CN

N
De

ns
eP

oi
nt

   
   

AV
G

.  
 0

2
4
6
8

10

S
pe

ed
up

0
20
40
60
80
100

E
ne

rg
y 

R
ed

uc
tio

n 
(%

)

Speedup Energy

(a) Feature computation.

Po
in

tN
et

++
 (c

)
Po

in
tN

et
++

 (s
)

DG
CN

N 
(c

)
DG

CN
N 

(s
)

F-
Po

in
tN

et
LD

G
CN

N
De

ns
eP

oi
nt

   
   

AV
G

.  
 0

3
6
9

12
15

S
pe

ed
up

0
20
40
60
80
100

E
ne

rg
y 

R
ed

uc
tio

n 
(%

)

Speedup Energy

(b) Aggregation.

Fig. 19: Speedup and energy savings on feature computation
and aggregation.

aggregation also adds to the overhead, leading to overall lower
speedup and energy reduction than on GPU.

Hardware With the AU hardware, Mesorasi-HW boosts
the speedup to 1.9× (up to 3.6×) and reduces the energy
consumption by 37.6% (up to 92.9%). DGCNN (s) has the
least speedup because it has the least aggregation time (Fig. 12),
thus benefiting the least from the AU hardware.

Fig. 19 shows the speedup and energy reduction of aggre-
gation over the baseline (which executes aggregation on the
GPU). Overall, Mesorasi-HW reduces the aggregation time by
7.5× and reduces the energy by 99.4%. The huge improvements
mainly come from using a small memory structure customized
to the data access patterns in aggregation.

On average, 27% (max 29%) of PFT buffer accesses are
to serve previous bank conflicts. The total time spent on PFT
buffer accesses is 1.5× of the ideal case without bank conflicts.
Empirically we do not observe pathological cases.

The AU’s speedup varies across networks. For instance,
the speedup on PointNet++ (c) is over 3× higher than
that of F-PointNet. This is because the speedup decreases
as bank conflict increases; bank conflicts occur more often

1047



PointNet++ (c)

PointNet++ (s)
DGCNN (c)

DGCNN (s)
F-PointNet

LDGCNN
DensePoint

AVG.
0

2

4

6

8

10

S
pe

ed
up

17.9

GPU Mesorasi-SW Mesorasi-HW

Fig. 20: Mesorasi-SW and Mesorasi-HW speedup over an
NSE-enabled SoC (GPU+NPU+NSE), which is 4.0× faster
than the GPU by accelerating both MLP and neighbor search.

when neighbor search returns more neighbors. The neighbor
searches in PointNet++ (c) mostly return 32 neighbors, whereas
neighbor searches in F-PointNet return mostly 128 neighbors,
significantly increasing the chances of bank conflicts. This also
explains why PointNet++ (c) has overall higher speedup than
F-PointNet (Fig. 18a).

VII-E. Results with Neighbor Search Engine (NSE)

From the evaluations above, it is clear that the improvements
of Mesorasi will ultimately be limited by the neighbor search
overhead, which Mesorasi does not optimize and becomes the
“Amdahl’s law bottleneck.”

To assess the full potential of Mesorasi, we evaluate it
in a futuristic SoC that incorporates a dedicated neighbor
search engine (NSE) that accelerates neighbor searches. We
implement a recently published NSE built specifically for
accelerating neighbor searches in point cloud algorithms [59],
and incorporate it into our SoC model. On average, the NSE
provides over 60× speedup over the GPU. Note that the NSE is
not our contribution. Instead, we evaluate the potential speedup
of Mesorasi if an NSE is available.

The speedup of Mesorasi greatly improves when neigh-
bor search is no longer a bottleneck. Fig. 20 shows the
speedups of Mesorasi-SW and Mesorasi-HW on the NSE-
enabled SoC. On average, Mesorasi-SW achieves 2.1× speedup
and Mesorasi-HW achieves 6.7× speedup. The two DGCNN
networks have particularly high speedups because neighbor
search contributes heavily to their execution times (Fig. 5).

VII-F. Sensitivity Study

The evaluations so far are based on one hardware configura-
tion. We now study how the improvements vary with different
hardware resource provisions. In particular, we focus on two
types of hardware resources: the baseline NPU and the AU
augmentation. Due to the page limit, we show only the results
of PointNet++ (s). The general trend holds.

NPU We find that Mesorasi has higher speedups when the
NPU is smaller. Fig. 21 shows how the speedup and normalized
energy of Mesorasi-HW over the baseline vary as the systolic
array (SA) size increases from 8× 8 to 48× 48. As the SA
size increases, the feature extraction time decreases, and thus
leaving less room for performance improvement. As a result,
the speedup decreases from 2.8× to 1.2×.

8x8
16x16

24x24
32x32

40x40
48x48

SA Size

0.0
0.5
1.0
1.5
2.0
2.5
3.0

S
pe

ed
up

0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
. E

ne
rg

y

Speedup Energy

Fig. 21: Sensitivity of the
speedup and energy to the
systolic array size.

3 6 12 24 48 96
NIT Buffer Size (KB)

8

16

32

64

128

256P
FT

 B
uf

fe
r S

iz
e 

(K
B

) 31.8 15.9 8.0 4.1 2.2 2.2

15.9 8.0 4.0 2.0 1.1 1.1

8.0 4.0 2.0 1.0 0.6 0.6

4.0 2.0 1.0 0.5 0.3 0.3

2.0 1.0 0.5 0.3 0.1 0.1

1.0 0.5 0.3 0.1 0.1 0.1
0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0

N
orm

. E
nergy

Fig. 22: Sensitivity of AU
energy consumption to the
NIT/PFT buffer sizes.

Meanwhile, the energy reduction increases from 17.7% to
23.4%. This is because a large SA is more likely throttled by
memory bandwidth, leading to overall higher energy.

AU We find that the AU energy consumption is sensitive
to the NIT and PFT buffer sizes. Fig. 22 shows the AU energy
under different NIT and PFT buffer sizes. The results are
normalized to the nominal design point described in Sec. VI
(i.e., a 64 KB of PFT and a 12 KB NIT).

The energy consumption increases as the PFT and NIT buffer
sizes decrease. In an extremely small setting with an 8 KB
PFT buffer and a 3 KB NIT buffer, the AU energy increases
by 32×, which leads to a 5.6% overall energy increase. This
is because a smaller PFT buffer leads to more PFT partitions,
which increases NIT buffer energy since each NIT entry must
be read once per partition. Meanwhile, a smaller NIT requires
more DRAM accesses, whose energy dominates as the PFT
buffer becomes very small. On the other extreme, using a 256
KB PFT buffer and a 96 KB NIT buffer reduces the overall
energy by 2.0% while increasing the area overhead by 4×. Our
design point balances energy saving and area overhead.

VIII. RelatedWork

Point Cloud Analytics Point cloud has only recently
received extensive interests. Unlike conventional image/video
analytics, point cloud analytics requires considerably different
algorithms due to the unique characteristics of point cloud data.
Most of the recent work focuses on the accuracy, exploring
not only different data representation (e.g., 2D projection [42],
voxelization [45], [58], and raw points [43], [53]), but also
different ways to extract features from points [43], [49], [53],
[57]. Our delayed-aggregation primitive can be thought of as a
new, and efficient, way of extracting features from raw points.

Mesorasi focuses on improving the efficiency of point cloud
algorithms while retaining the high accuracy. In the same
vein, PVCNN [35] combines point-based and voxel-based
data representations in order to boost compute and memory
efficiency. Different but complementary, Mesorasi focuses on
point-based neural networks. While PVCNN is demonstrated on
GPUs, Mesorasi not only directly benefits commodity GPUs,
but also incorporates systematic hardware support that improves
DNN accelerators.

Prior work has also extensively studied systems and ar-
chitectures for accelerating neighbor search on GPU [25],
[44], FPGA [27], [31], [56], and ASIC [59]. Neighbor search

1048



contributes non-trivial execution time to point cloud networks.
Mesorasi hides, rather than reduces, the neighbor search latency,
and directly benefits from faster neighbor search.

GNNs Point cloud applications bear some resemblance to
GNNs. After all, both deal with spatial/geometric data. In fact,
some point cloud applications are implemented using GNNs,
e.g., DGCNN [53].

However, existing GNN accelerators, e.g., HyGCN [60],
are insufficient in accelerating point cloud applications. Fun-
damentally, GNN does not require explicit neighbor search
(as a vertex’s neighbors are explicitly encoded), but neighbor
search is a critical bottleneck of all point cloud applications,
as points are arbitrarily spread in 3D space. Our design hides
the neighbor search latency, which existing GNN accelerators
simply do not optimize for. In addition, Mesorasi minimally
extends conventional DNN accelerators instead of being a new
accelerator design, broadening its applicability in practice.

From Fig. 5, one might notice that A in point cloud
networks is much faster than F , which is the opposite in many
GNNs [60]. This is because F in point cloud applications does
much more work than A, opposite to GNNs. In point cloud
application, A simply gathers neighbor feature vectors, and
F operates on neighbor feature vectors (MLP on each vector).
In contrast, A in GNNs gathers and reduces neighbor feature
vectors to one vector, and F operates on the reduced vector
(MLP on one vector).

Domain-Specific Accelerator Complementary to improv-
ing generic DNN accelerators, much of recent work has focused
on improving the DNN accelerators for specific application
domains such as real-time computer vision [18], [21], [67],
computational imaging [28], [36], and language processing [46].
The NPU in the Mesorasi architecture is a DNN accelerator
specialized to point cloud processing. Mesorasi also extends
beyond prior visual accelerators that deal with 2D data (images
and videos) [32], [37], [38], [63], [64], [66] to 3D point clouds.

To keep the modularity of existing SoCs, Mesorasi relies
on the DRAM for inter-accelerator communication. That said,
Mesorasi could benefit from more direct accelerator commu-
nication schemes such as VIP [39] and Short-circuiting [62].
For instance, the NIT could be directly communicated to the
NIT buffer from the GPU through a dedicated on-chip link,
pipelining neighbor search with aggregation.

IX. Conclusion

With the explosion of 3D sensing devices (e.g., LiDAR,
stereo cameras), point cloud algorithms present exciting
opportunities to transform the perception ability of future
intelligent machines. Mesorasi takes a systematic step toward
efficient point cloud processing. The key to Mesorasi is the
delayed-aggregation primitive that decouples neighbor search
with feature computation and significantly reduces the overall
workload. Hardware support maximizes the effectiveness of
delayed-aggregation. The potential gain is even greater in future
SoCs where neighbor search is accelerated.

References

[1] “Apple says its new A13 Bionic chip brings hours of extra battery life
to new iPhones.” [Online]. Available: https://en.wikichip.org/wiki/apple/
ax/a13

[2] “ARCore.” [Online]. Available: https://developers.google.com/ar
[3] “ARM’s First Generation ML Processor, HotChips 30.”

[Online]. Available: https://www.hotchips.org/hc30/2conf/2.07 ARM
ML Processor HC30 ARM 2018 08 17.pdf

[4] “GCN in PyTorch Geometric.” [Online]. Available: https://github.com/
rusty1s/pytorch geometric/blob/master/examples/gcn.py

[5] “GraphSage in TensorFlow.” [Online]. Available: https://github.com/
williamleif/GraphSAGE

[6] “Mesorasi wiki.” [Online]. Available: https://github.com/horizon-
research/Efficient-Deep-Learning-for-Point-Clouds/wiki

[7] “Micron 178-Ball, Single-Channel Mobile LPDDR3 SDRAM
Features.” [Online]. Available: https://www.micron.com/-
/media/client/global/documents/products/data-sheet/dram/mobile-
dram/low-power-dram/lpddr3/178b 8-16gb 2c0f mobile lpddr3.pdf

[8] “Micron System Power Calculators.” [Online]. Available: https:
//www.micron.com/support/tools-and-utilities/power-calc

[9] “Nvidia GP10B Spec.” [Online]. Available: https://
www.techpowerup.com/gpu-specs/nvidia-gp10b.g856

[10] “NVIDIA Jetson TX2 Delivers Twice the Intelligence to the Edge.”
[Online]. Available: https://devblogs.nvidia.com/jetson-tx2-delivers-
twice-intelligence-edge/

[11] “Nvidia reveals xavier soc details.” [Online]. Avail-
able: https://www.forbes.com/sites/moorinsights/2018/08/24/nvidia-
reveals-xavier-soc-details/amp/

[12] “NVIDIA’s Xavier System-on-Chip, HotChips 30.” [On-
line]. Available: https://www.hotchips.org/hc30/1conf/1.12 Nvidia
XavierHotchips2018Final 814.pdf

[13] “Pascal (microarchitecture).” [Online]. Available: https://en.wikipedia.org/
wiki/Pascal (microarchitecture)

[14] “Second Version of HoloLens HPU will Incorporate
AI Coprocessor for Implementing DNNs.” [Online]. Avail-
able: https://www.microsoft.com/en-us/research/blog/second-version-
hololens-hpu-will-incorporate-ai-coprocessor-implementing-dnns/

[15] “Waymo Offers a Peek Into the Huge Trove of
Data Collected by Its Self-Driving Cars.” [Online]. Avail-
able: https://spectrum.ieee.org/cars-that-think/transportation/self-driving/
waymo-opens-up-part-of-its-humongous-selfdriving-database

[16] P. Alliez, F. Forge, L. De Luca, M. Pierrot-Deseilligny, and M. Preda,
“Culture 3d cloud: A cloud computing platform for 3d scanning,
documentation, preservation and dissemination of cultural heritage,” 2017.

[17] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss,
and J. Gall, “Semantickitti: A dataset for semantic scene understanding
of lidar sequences,” in Proceedings of the 13th IEEE International
Conference on Computer Vision, 2019.

[18] M. Buckler, P. Bedoukian, S. Jayasuriya, and A. Sampson, “Eva2:
Exploiting temporal redundancy in live computer vision,” in Proceedings
of the 45th ACM/IEEE Annual International Symposium on Computer
Architecture, 2018.

[19] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,
Z. Li, S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and
F. Yu, “ShapeNet: An Information-Rich 3D Model Repository,” Stanford
University — Princeton University — Toyota Technological Institute at
Chicago, Tech. Rep. arXiv:1512.03012 [cs.GR], 2015.

[20] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in ACM
SIGARCH Computer Architecture News, vol. 44, no. 3. IEEE Press,
2016, pp. 367–379.

[21] Y. Feng, P. Whatmough, and Y. Zhu, “Asv: Accelerated stereo vision
system,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2019.

[22] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning on
Graphs and Manifolds, 2019.

[23] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris: Scalable
and efficient neural network acceleration with 3d memory,” in Proceedings
of the 22nd ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2017.

1049



[24] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Proceedings of the 25th
IEEE Conference on Computer Vision and Pattern Recognition, 2012.

[25] F. Gieseke, J. Heinermann, C. Oancea, and C. Igel, “Buffer k-d trees:
Processing massive nearest neighbor queries on gpus,” 2014.

[26] M. Gross and H. Pfister, Point-based graphics. Elsevier, 2011.
[27] S. Heinzle, G. Guennebaud, M. Botsch, and M. H. Gross, “A hardware

processing unit for point sets,” in Acm Siggraph/eurographics Symposium
on Graphics Hardware, 2008.

[28] C.-T. Huang, Y.-C. Ding, H.-C. Wang, C.-W. Weng, K.-P. Lin, L.-W.
Wang, and L.-D. Chen, “ecnn: A block-based and highly-parallel cnn
accelerator for edge inference,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019.

[29] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of the
44th Annual International Symposium on Computer Architecture, 2017.

[30] D. B. Kirk and W. H. Wen-Mei, Programming massively parallel
processors: a hands-on approach. Morgan kaufmann, 2016.

[31] T. Kuhara, T. Miyajima, M. Yoshimi, and H. Amano, An FPGA
Acceleration for the Kd-tree Search in Photon Mapping, 2013.

[32] Y. Leng, C.-C. Chen, Q. Sun, J. Huang, and Y. Zhu, “Energy-efficient
video processing for virtual reality,” in Proceedings of the 46th Interna-
tional Symposium on Computer Architecture, 2019.

[33] M. Levoy and T. Whitted, The use of points as a display primitive.
Citeseer, 1985.

[34] Y. Liu, B. Fan, G. Meng, J. Lu, S. Xiang, and C. Pan, “Densepoint:
Learning densely contextual representation for efficient point cloud
processing,” in Proceedings of the 14th IEEE International Conference
on Computer Vision, 2019.

[35] Z. Liu, H. Tang, Y. Lin, and S. Han, “Point-voxel cnn for efficient 3d
deep learning,” in Advances in Neural Information Processing Systems,
2019, pp. 963–973.

[36] M. Mahmoud, K. Siu, and A. Moshovos, “Diffy: A déjà vu-free
differential deep neural network accelerator,” in Proceedings of the 51st
Annual IEEE/ACM International Symposium on Microarchitecture, 2018.

[37] M. Mahmoud, B. Zheng, A. D. Lascorz, F. H. Assouline, J. Assouline,
P. Boucher, E. Onzon, and A. Moshovos, “Ideal: Image denoising
accelerator,” in Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, 2017.

[38] A. Mazumdar, T. Moreau, S. Kim, M. Cowan, A. Alaghi, L. Ceze,
M. Oskin, and V. Sathe, “Exploring computation-communication tradeoffs
in camera systems,” in Proceedings of the 9th IEEE International
Symposium on Workload Characterization, 2017.

[39] N. C. Nachiappan, H. Zhang, J. Ryoo, N. Soundararajan, A. Sivasubra-
maniam, M. T. Kandemir, R. Iyer, and C. R. Das, “Vip: virtualizing ip
chains on handheld platforms,” ACM SIGARCH Computer Architecture
News, vol. 43, no. 3, pp. 655–667, 2016.

[40] H. Pfister, M. Zwicker, J. Van Baar, and M. Gross, “Surfels: Surface
elements as rendering primitives,” in Proceedings of the 27th annual
conference on Computer graphics and interactive techniques, 2000, pp.
335–342.

[41] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, “Frustum pointnets
for 3d object detection from rgb-d data,” in Proceedings of the 31st
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 918–927.

[42] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas,
“Volumetric and multi-view cnns for object classification on 3d data,”
in Proceedings of the 29th IEEE conference on computer vision and
pattern recognition, 2016.

[43] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” in Advances in neural
information processing systems, 2017, pp. 5099–5108.

[44] D. Qiu, S. May, and A. Nüchter, “Gpu-accelerated nearest neighbor search
for 3d registration,” in Proceedings of the 9th International Conference
on Computer Vision Systems, 2009.

[45] G. Riegler, A. Osman Ulusoy, and A. Geiger, “Octnet: Learning deep
3d representations at high resolutions,” in Proceedings of the 30th IEEE
Conference on Computer Vision and Pattern Recognition, 2017.

[47] S. Rusinkiewicz and M. Levoy, “Qsplat: A multiresolution point rendering
system for large meshes,” in Proceedings of the 27th annual conference
on Computer graphics and interactive techniques, 2000, pp. 343–352.

[46] M. Riera, J.-M. Arnau, and A. González, “Computation reuse in dnns
by exploiting input similarity,” in Proceedings of the 45th IEEE Annual
International Symposium on Computer Architecture, 2018.

[48] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms
(fpfh) for 3d registration,” in Proceedings of the 22nd IEEE International
Conference on Robotics and Automation, 2009.

[49] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned filters
in convolutional neural networks on graphs,” in Proceedings of the 30th
IEEE conference on computer vision and pattern recognition, 2017.

[50] J. D. Stets, Y. Sun, W. Corning, and S. W. Greenwald, “Visualization
and labeling of point clouds in virtual reality,” in SIGGRAPH Asia 2017
Posters. ACM, 2017, p. 31.

[51] F. Tombari, S. Salti, and L. Di Stefano, “Unique signatures of histograms
for local surface description,” in European conference on computer vision.
Springer, 2010.

[52] M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, M. Li, J. Zhou,
Q. Huang, C. Ma et al., “Deep graph library: Towards efficient and
scalable deep learning on graphs,” arXiv preprint arXiv:1909.01315,
2019.

[53] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph cnn for learning on point clouds,” ACM
Transactions on Graphics (TOG), vol. 38, no. 5, pp. 1–12, 2019.

[54] N. H. Weste and D. Harris, CMOS VLSI design: a circuits and systems
perspective. Pearson Education India, 2015.

[55] M. Whitty, S. Cossell, K. S. Dang, J. Guivant, and J. Katupitiya,
“Autonomous navigation using a real-time 3d point cloud,” in 2010
Australasian Conference on Robotics and Automation, 2010.

[56] F. Winterstein, S. Bayliss, and G. A. Constantinides, “Fpga-based k-means
clustering using tree-based data structures,” in International Conference
on Field Programmable Logic & Applications, 2013.

[57] W. Wu, Z. Qi, and L. Fuxin, “Pointconv: Deep convolutional networks
on 3d point clouds,” in Proceedings of the 32nd IEEE Conference on
Computer Vision and Pattern Recognition, 2019.

[58] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d
shapenets: A deep representation for volumetric shapes,” in Proceedings
of the 28th IEEE conference on computer vision and pattern recognition,
2015.

[59] T. Xu, B. Tian, and Y. Zhu, “Tigris: Architecture and algorithms for 3d
perception in point clouds,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, 2019, pp. 629–642.

[60] M. Yan, L. Deng, X. Hu, L. Liang, Y. Feng, X. Ye, Z. Zhang, D. Fan,
and Y. Xie, “Hygcn: A gcn accelerator with hybrid architecture,” in
Proceedings of the 26th International Symposium on High Performance
Computer Architecture, 2020.

[61] A. Yazdanbakhsh, K. Samadi, N. S. Kim, and H. Esmaeilzadeh, “Ganax:
A unified mimd-simd acceleration for generative adversarial networks,”
in Proceedings of the 45th ACM/IEEE Annual International Symposium
on Computer Architecture, 2018.

[62] P. Yedlapalli, N. C. Nachiappan, N. Soundararajan, A. Sivasubramaniam,
M. T. Kandemir, and C. R. Das, “Short-circuiting memory traffic in
handheld platforms,” in Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE, 2014, pp. 166–
177.

[63] H. Zhang, P. V. Rengasamy, S. Zhao, N. C. Nachiappan, A. Sivasub-
ramaniam, M. T. Kandemir, R. Iyer, and C. R. Das, “Race-to-sleep+
content caching+ display caching: a recipe for energy-efficient video
streaming on handhelds,” in Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture, 2017.

[64] H. Zhang, S. Zhao, A. Pattnaik, M. T. Kandemir, A. Sivasubramaniam,
and C. R. Das, “Distilling the essence of raw video to reduce memory
usage and energy at edge devices,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019.

[65] K. Zhang, M. Hao, J. Wang, C. W. de Silva, and C. Fu, “Linked dynamic
graph cnn: Learning on point cloud via linking hierarchical features,”
arXiv preprint arXiv:1904.10014, 2019.

[66] S. Zhao, H. Zhang, S. Bhuyan, C. Mishra, Z. Ying, M. T. Kandemir,
A. Sivasubramaniam, and C. R. Das, “Déjà-view: Spatio-temporal com-
pute reuse for energy-efficient 3600 vr video streaming,” in Proceedings
of the 47th ACM/IEEE Annual International Symposium on Computer
Architecture, 2020.

[67] Y. Zhu, A. Samajdar, M. Mattina, and P. Whatmough, “Euphrates:
Algorithm-soc co-design for low-power mobile continuous vision,” in
Proceedings of the 45th ACM/IEEE Annual International Symposium on
Computer Architecture, 2018.

1050


