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The game changers
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Hardware Workloads

Heterogeneous and underutilized Complex and unpredictable



Agile data management engines

3Where’s the sweet spot?
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Analytics on heterogeneous hardware

4Device specialization carries portability debt
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Analytics on heterogeneous hardware

5Device specialization carries portability debt
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2x Intel(R) Xeon(R) Gold 5118 CPU
2x Mellanox MT27800 100G IB NIC

2x NVIDIA Tesla V100S GPU
13 Queries, CPU-resident data

96-144GB working set/query
Join-heavy: SPJ{1-4}Aggr

Scan-heavy: Scan-Aggr
4 servers



Lifetime of a Query
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Hardware-conscious Analytics?

Traditional CPU-optimized Relies on

radix-(join/group by) High cache-size-to-thread ratio

vector-at-a-time High cache-size-to-thread ratio

parallelism/inter-socket atomics Efficient inter-socket 
operations

7Won’t work on GPUs
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A fast equi-join algorithm
Radix-join

Partition both inputs
Size partition fanout based on memory hierarchy (TLB+caches)
Assuming sufficient cache-to-thread ratio

GPU memory hierarchy
Low cache-to-thread ratio
Software and hardware-managed caches
But collaborative thread execution

8Think differently for GPUs!

[Boncz et al. VLDB1999]
R SR hashtable
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GPU-aware radix-join
Collaboratively partition per GPU thread block

Amortize radix cluster maintenance
Rely on big register files and thread overlapping
Avoid random accesses to GPU memory

Stage partition output in scratchpad
Irregular access patterns through scratchpad
Coalesce writes through shared memory
Multiple threads “complete” a cache line

93.6x speedup

scratchpad

threads

input

Partitions

[ICDE2019]



Accelerator-conscious Analytics

Traditional CPU-optimized CPU-GPU

radix-(join/group by) Tune operators to 
memory hierarchy specifics

vector-at-a-time Code fusion & specialization
for fast composability

parallelism/inter-socket atomics Encapsulate heterogeneity 
and balance load
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11JIT pipelines
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SELECT SUM(a)
FROM T
WHERE b > 42

[VLDB2019]
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JIT Code Generation for OLAP in GPUs
[VLDB2019]
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Device providers

Inject target-specific info

[VLDB2019]
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14Multiple pipeline instances
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JIT data flow inspection
Decouple data- from control-flow
Encapsulate trait conversions into operators
Inspect flows to load-balance

15Distribute load to devices adaptively
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Abstractions for fast CPU-GPU analytics

16Selective obliviousness

intra-operator

inter-device

intra-device

Operator tuning is μ-architecture specific

Portability clashes with specialization 
Inject target-specific info using codegen

Limited device inter-operability
Encapsulate heterogeneity and balance load

GPU⨝
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GPU⨝⨝σ

Tune operators to memory hierarchy specifics

[CIDR2019]
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Hardware Workloads

Heterogeneous and underutilized Complex and unpredictable



Specialized OLTP & OLAP Systems

18Data freshness bounded by ETL latency

AnalyticsTransactions

Extract-Transform-Load

OLTP OLAP

Fresh Data



Hybrid Transactional and Analytical Processing

OLTP: task-parallel
– High rate of short-lived transactions
– Mostly point accesses ( high data access locality)

OLAP: data-parallel
– Few, but long-running queries
– Scans large parts of database

19Align tasks & hardware to improve utilization



HTAP: Chasing ‘locality of freshness’
Static OLAP-OLTP assignment

– Unnecessary tradeoff between interference and performance
– Pre-determined resource assignment based on workload type
– Wasteful data consolidation and synchronization

Real-time, Adaptive scheduling of HTAP workloads
– Specialize to requirements and data/freshness-rates
– Workload-based resource assignment
– Pay-as-you-go snapshot updates

20Task placement based on resource usage
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Workload Isolation & Fresh Data Throughput

21no extreme is good

ETL

Isolated Elastic-ComputeHybrid-Access

Independent execution (isolation)
Fresh Data Access Bandwidth

Fresh Data

OLAPOLTP Interference ßà performance
Pre-determined resource assignment

Colocated



Workload Isolation & Fresh Data

ETL

Isolated Elastic-ComputeHybrid-Access

Fresh Data

OLAPOLTP

Colocated

Task placement & consolidation based on 
resource usage

Real-time: Adaptive scheduling of HTAP workloads
– Specialize to requirements and amount of unconsolidated data
– Workload-based resource assignment
– Pay-as-you-go snapshot updates



Caldera: HTAP on CPU-GPU Servers
Store data in shared memory
Run OLTP workloads on task-parallel processors
Run OLAP workloads on data-parallel processors

– On-demand copy-on-write snapshots in shared memory

23Adaptively scaling resources with load

Data-parallel archipelago (OLAP)Task-parallel archipelago (OLTP)

Core GPUCore Core Core Core Core GPU

DRAM
In-memory data store

DRAMDRAM DRAM DRAM DRAM DRAM DRAM

[CIDR2017]



GPU Accesses Fresh Data from CPU Memory
OLTP generates fresh data

on CPU Memory

Data access protected by
concurrency control

OLAP needs to access
fresh data

24snapshot isolation for OLAP w/o CC overheads

Read / Write

Storage

Fetch Fresh Data

Main 
Memory

DRAM 
NVLink

PCIe

OLTP

OLAP

[CIDR2017, CIDR2020, SIGMOD2020]
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Increasing workload complexity
Diverse modern data problems

– IOT, OCR, ML, NLP, Medical, Mathematics etc…

DBMS catch-up for popular functionality
– Human effort and big delays
– Oblivious to out-of-DBMS workflows

Vast resource of libraries
– Authored by domain experts, used by everybody
– Loose library-to-data-sources integration and optimization

26Need for systems that can “learn” new functionality



Network looks like a single machine
Similar intra-/inter-server interconnect bandwidth
Local memories and NUMA effects across devices
CPU-GPU: Capacity-Throughput

27Heterogeneous interconnected devices across 
the CPUs

IB

IB



A solution is only as efficient 
as its least adaptive component.

Intelligent Real-time Systems

Hardware Workloads


