
Accelerated Data Management Systems
Through Real-Time Specialization

Anastasia Ailamaki
for Periklis Chrysogelos, Aunn Raza, Panos Sioulas,

and the DIAS team

The game changers

2

Hardware Workloads

Heterogeneous and underutilized Complex and unpredictable

Agile data management engines

3Where’s the sweet spot?

Heterogeneity
Oblivious

Heterogeneity
Conscious

Hardware
Oblivious

Hardware
Conscious

Portability Performance

Portability Performance

+ALP +ALP

Analytics on heterogeneous hardware

4Device specialization carries portability debt

Pe
rf

or
m

an
ce

Portability
debt

XXX-conscious
engine

HW-oblivious
engine

YYY-conscious
engine

Hardware Features & Diversity

HW-promised
performance

Specialization
benefit

Analytics on heterogeneous hardware

5Device specialization carries portability debt

0

5

10

15

20

Join-heavy 50%-50% Mix Scan-heavy

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
) CPU-only Hybrid GPU-only

2x Intel(R) Xeon(R) Gold 5118 CPU
2x Mellanox MT27800 100G IB NIC

2x NVIDIA Tesla V100S GPU
13 Queries, CPU-resident data

96-144GB working set/query
Join-heavy: SPJ{1-4}Aggr

Scan-heavy: Scan-Aggr
4 servers

Lifetime of a Query

6

σ

⨝

Γ

filter

aggregate

scan

σ

T1

⨝
σ

T2
⨝

T3 ∏

T4

project

scan

scan
scan

join

filter

join

join

SELECT SUM(T3.c * T4.d)
FROM T1, T2, T3, T4, …
WHERE T1.f < 50 AND T1.a = T2.t1_id AND …

Query Execution Plan

Query Execution

Result

Query

Query Parsing & Optimization

SUM

5

Random

Control-heavy

Sequential

Hardware-conscious Analytics?

Traditional CPU-optimized Relies on

radix-(join/group by) High cache-size-to-thread ratio

vector-at-a-time High cache-size-to-thread ratio

parallelism/inter-socket atomics Efficient inter-socket
operations

7Won’t work on GPUs

⨝

T4

Random-access

Control-heavy

Sequential scan

A fast equi-join algorithm
Radix-join

Partition both inputs
Size partition fanout based on memory hierarchy (TLB+caches)
Assuming sufficient cache-to-thread ratio

GPU memory hierarchy
Low cache-to-thread ratio
Software and hardware-managed caches
But collaborative thread execution

8Think differently for GPUs!

[Boncz et al. VLDB1999]
R SR hashtable

h

probe

GPU-aware radix-join
Collaboratively partition per GPU thread block

Amortize radix cluster maintenance
Rely on big register files and thread overlapping
Avoid random accesses to GPU memory

Stage partition output in scratchpad
Irregular access patterns through scratchpad
Coalesce writes through shared memory
Multiple threads “complete” a cache line

93.6x speedup

scratchpad

threads

input

Partitions

[ICDE2019]

Accelerator-conscious Analytics

Traditional CPU-optimized CPU-GPU

radix-(join/group by) Tune operators to
memory hierarchy specifics

vector-at-a-time Code fusion & specialization
for fast composability

parallelism/inter-socket atomics Encapsulate heterogeneity
and balance load

10

⨝

T4

Random-access

Control-heavy

Sequential scan

aggregate

router

segmenter

mem-move

cpu2gpu

unpack

filter

router

aggregate

gpu2cpu

9

8

4

3

2

1

7

10

11 5

6

device
crossing

device
crossing

pipeline id x

GPU pipeline
CPU pipeline

JIT

instances

SQL à ALP-aware code

11JIT pipelines

filter

aggregate

scan

HetExchange

Logical plan

SELECT SUM(a)
FROM T
WHERE b > 42

[VLDB2019]

aggregate

router

segmenter

mem-move

cpu2gpu

unpack

filter

router

aggregate

gpu2cpu

9

8

4

3

2

1

7

10

11 5

6

device
crossing

device
crossing

JIT

12

JIT Code Generation for OLAP in GPUs
[VLDB2019]

13

Device providers

Inject target-specific info

[VLDB2019]

aggregate

router

segmenter

mem-move

cpu2gpu

unpack

filter

router

aggregate

gpu2cpu

9

8

4

3

2

1

7

10

11 5

6

device
crossing

device
crossing

pipeline id x

GPU pipeline
CPU pipeline

JIT

instances

From SQL to Pipeline Orchestration

14Multiple pipeline instances

Run

routing point

routing point

filter

aggregate

scan

HetExchange

Logical plan

SELECT SUM(a)
FROM T
WHERE b > 42

[VLDB2019]

JIT data flow inspection
Decouple data- from control-flow
Encapsulate trait conversions into operators
Inspect flows to load-balance

15Distribute load to devices adaptively

filter

unpack

cpu2gpu

gpu2cpu

pack

mem-move

mem-move

aggregate

router

router

unpack

aggregate

Flow Scope Trait

Control
Delegation Heterogeneous Parallelism

Routing Homogeneous Parallelism

Data
Transfer Data Locality

Granularity Execution Granularity

filter

aggregate

scan

[VLDB2019]

Abstractions for fast CPU-GPU analytics

16Selective obliviousness

intra-operator

inter-device

intra-device

Operator tuning is μ-architecture specific

Portability clashes with specialization
Inject target-specific info using codegen

Limited device inter-operability
Encapsulate heterogeneity and balance load

GPU⨝

CU⨝⨝σ

GPU⨝⨝σGPU⨝⨝σ

GPU⨝⨝σ

Tune operators to memory hierarchy specifics

[CIDR2019]

CPU

GPU

The game changers

17

Hardware Workloads

Heterogeneous and underutilized Complex and unpredictable

Specialized OLTP & OLAP Systems

18Data freshness bounded by ETL latency

AnalyticsTransactions

Extract-Transform-Load

OLTP OLAP

Fresh Data

Hybrid Transactional and Analytical Processing

OLTP: task-parallel
– High rate of short-lived transactions
– Mostly point accesses (high data access locality)

OLAP: data-parallel
– Few, but long-running queries
– Scans large parts of database

19Align tasks & hardware to improve utilization

HTAP: Chasing ‘locality of freshness’
Static OLAP-OLTP assignment

– Unnecessary tradeoff between interference and performance
– Pre-determined resource assignment based on workload type
– Wasteful data consolidation and synchronization

Real-time, Adaptive scheduling of HTAP workloads
– Specialize to requirements and data/freshness-rates
– Workload-based resource assignment
– Pay-as-you-go snapshot updates

20Task placement based on resource usage

GPU

CPU

GPU

CPU

Colocated
execution

Separated
execution

PerformanceData freshness

GPU

CPU

GPU

CPU

Workload Isolation & Fresh Data Throughput

21no extreme is good

ETL

Isolated Elastic-ComputeHybrid-Access

Independent execution (isolation)
Fresh Data Access Bandwidth

Fresh Data

OLAPOLTP Interference ßà performance
Pre-determined resource assignment

Colocated

Workload Isolation & Fresh Data

ETL

Isolated Elastic-ComputeHybrid-Access

Fresh Data

OLAPOLTP

Colocated

Task placement & consolidation based on
resource usage

Real-time: Adaptive scheduling of HTAP workloads
– Specialize to requirements and amount of unconsolidated data
– Workload-based resource assignment
– Pay-as-you-go snapshot updates

Caldera: HTAP on CPU-GPU Servers
Store data in shared memory
Run OLTP workloads on task-parallel processors
Run OLAP workloads on data-parallel processors

– On-demand copy-on-write snapshots in shared memory

23Adaptively scaling resources with load

Data-parallel archipelago (OLAP)Task-parallel archipelago (OLTP)

Core GPUCore Core Core Core Core GPU

DRAM
In-memory data store

DRAMDRAM DRAM DRAM DRAM DRAM DRAM

[CIDR2017]

GPU Accesses Fresh Data from CPU Memory
OLTP generates fresh data

on CPU Memory

Data access protected by
concurrency control

OLAP needs to access
fresh data

24snapshot isolation for OLAP w/o CC overheads

Read / Write

Storage

Fetch Fresh Data

Main
Memory

DRAM
NVLink

PCIe

OLTP

OLAP

[CIDR2017, CIDR2020, SIGMOD2020]

GPU Accesses Fresh Data from CPU Memory
OLTP generates fresh data

on CPU Memory

Data access protected by
concurrency control

OLAP needs to access
fresh data

25snapshot isolation for OLAP w/o CC overheads

Read / Write

Storage

Fetch Fresh Data

Main
Memory

DRAM
NVLink

PCIe

OLTP

OLAP

GPU

CPU
CommandSchedule

[CIDR2017, CIDR2020, SIGMOD2020]

Increasing workload complexity
Diverse modern data problems

– IOT, OCR, ML, NLP, Medical, Mathematics etc…

DBMS catch-up for popular functionality
– Human effort and big delays
– Oblivious to out-of-DBMS workflows

Vast resource of libraries
– Authored by domain experts, used by everybody
– Loose library-to-data-sources integration and optimization

26Need for systems that can “learn” new functionality

Network looks like a single machine
Similar intra-/inter-server interconnect bandwidth
Local memories and NUMA effects across devices
CPU-GPU: Capacity-Throughput

27Heterogeneous interconnected devices across
the CPUs

IB

IB

A solution is only as efficient
as its least adaptive component.

Intelligent Real-time Systems

Hardware Workloads

