Accelerated Data Management Systems
Through Real-Time Specialization

Anastasia Ailomaki

for Periklis Chrysogelos, Aunn Raza, Panos Sioulas,
and the DIAS team

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE EI : L

i

1111
——

A : Workloads

Hardware

Heterogeneous and underutilized Complex and unpredictable

Agile data management engines

Portability Performance
Pye
< < > >
Heterogeneity = +ALP Hardware Hardware +ALP Heterogeneity
Oblivious Oblivious Conscious Conscious

Where’s the sweet spot? ;

Analytics on heterogeneous hardware

e

Portability
. debt
HW-promised
S performance =
c .
S YY-conscious
\ i
g Specialization . XXX-conscious engine \
qg : ben&f_i’r engine I’ 00 EEE
o 1 [000
a- Hardware Features =... o
- T
BB — |sEEEEEs

t .,
Device specialization carries portability debt:

N —| -l S
Analytics on heterogeneous hardware

2x Intel(R) Xeon(R) Gold 5118 CPU

2x Mellanox MT27800 100G IB NIC

i 2x NVIDIA Tesla V100S GPU

[] CPU-onIy [] Hybrld [GPU-onIy 13 Queries, CPU-resident data

96-144GB working set/query

N
o

Join-heavy: SPJ{1-4}Aggr

©

()

E 15 Scan-heavy: Scan-Aggr

'E 4 servers

)

g 10 {

O | | |

o I’ 00 T

X HEN

& s AN -

S SEmE| [s

|9 - |
Join-heavy 50%-50% Mix Scan-heavy t

Device specialization carries portability debt:

Lifetime of a Query

SELECT SUM(T3.c * T4.d)
FROM T1, T2, T3, T4, ...
WHERE T1.f <50 AND T1.a=T2.t1_id AND ...

Query | aggregate B<— - — - ToTuzumuzes Random
Control-heavy —=:ziZ. _
e 1 NN I =l=
-~ VAo Sum
f‘x:[> NN =... —>
Query Parsing & Optimization CIEE Result

project Query Execution

Sequential —-=+#=ig="
Query Execution Plan

scan

AXTAN= =}
Hardware-conscious Analytics?

Traditional CPU-optimized Relies on
@ Random-access radix-(join/group by) High cache-size-to-thread ratio
/" Control-heavy vector-at-a-time High cache-size-to-thread ratio
_ o : Efficient inter-socket
@ Sequential scan parallelism/inter-socket atomics

operations

Won’t work on GPUs 7

A fast equi-join algorithm

[Boncz et al. VLDB1999]

S1
>

R hashtable

i

Size partition fanout based on memory hierarchy (TLB+caches)

R1
e
-

Radix-join
Partition both inputs

Assuming sufficient cache-to-thread ratio

R1
hashtable

GPU memory hierarchy

Low cache-to-thread ratio
Software and hardware-managed caches

hashtable
/’
.) h2 << >
But collaborative thread execution . iy I Lo .

Partition Build Probe Partition

Think differently for GPUs! :

GPU-aware radix-join

[ICDE2019]

Collaboratively partition per GPU thread block threads
$$ 235222 ¢ ¢

Amortize radix cluster maintenance
Rely on big register files and thread overlapping
Avoid random accesses to GPU memory =]~ scratchpad

Partitions

Stage partition output in scratchpad
Irregular access patterns through scratchpad

Coalesce writes through shared memory

Multiple threads “complete” a cache line

3.6x speedup ;

Accelerator-conscious Analytics

Traditional CPU-optimized CPU-GPU

Tune operators to

@ Random-access radix-(join/group by) memory hierarchy specifics

Code fusion & specialization

/" Control-heavy vector-at-a-time 8 fast comporan i

Encapsulate heterogeneity

' arallelism/inter-socket atomics
@ Sequential scan P and balance load

10

SELECT SUM(a)
FROM T
WHERE b > 42

! ! Logical plan

aggregate

filter

scan

|‘|HetExchang§
)

[pipeline id
[cPU pipeline
|1 GPU pipeline

|:| |:| instances

SQL

ALP-aware code

aggregate
]
router
device L
gpu2cpu) 3
crossing| g
L
aggregate P
filter
JT B
unpack
device
cpu2gpu crossing 4
mem-move
=] [
router
segmenter E

JIT pipelines

[VLDB2019]

11

5

aggregate

filter

unpack

cpu2gpu

~ JIT Code Generation for OLAP in GPUs

=}

[VLDB2019]

def unpack_filter_reduce (data_block, N,
state)
flocal_acc «+ 0

for i = threadldInWorker to N — 1 with
step #threadsInWorker
‘ t + data_block[i]

T 2 if t.a > 42
local_acc «+ local_acc + t.b

1
nh_acc « neighborhood_reduce(local_acc)
tf thread neighborhood leader

device,
atomic_add (state.acc, nh_acc)

crossing

12

Device providers VLDB2019]

function ufr_cpu(data_block, N, state)

g’PU_d I local_acc < O
rovider for i = 0 to N — 1
t < data_block[i]
def unpack_filter_reduce (data_block, N, if t.a > 42
state) local_acc « local_acc + t.b
I local acc < 0 nh_acc < local_acc
for i = threadldInWorker to N — 1 with |state.acc <« state.acc _i_—rln G

step #threadsInWorker

t <« data_block|[1i] :
if t.a > 42 gpu_kernel ufr_gpu(data_block, N, state)

local_acc <« local_acc + t.b Iloca‘!‘acc < 0 . -
nh_acc < neighborhood_reduce(local_acc for 1 = threadldInGrid to N — 1 wath
if thread neighborhood leader step gridSize
latomic_add(state.acc, nh_ aC(ﬂ t «— data_block[i]

if t.a > 42
local_acc < local_acc + t.b
Sl!:)bjider nh_acc «+ threadblock_reduce(local_acc)
1f threadld = 0

‘atomicAdd(state.acc, nh_acc)!

Inject target-specific info :

Ly = Lum

SQL to Pipeline Orchestration sz
aggregate E’
El routing point

SELECT SUM(a)
FROM T
WHERE b > 42

! ! Logical plan router — T
u2couU device; 3 LU
aggregate gpuscp crossing 5 =i
filter aggregate ,'= =1= —
filter
scan k I o Run
HetExchang@ unpac
) device L
g cpuZgpu crossing 4 1]
G pipeline id mem-move L L
] cpPU pipeline El EI
GPU pipeline L LI
= ; PP router routing point
0 0 instances ~

segmenter

Multiple pipeline instances X

Decouple data- from control-flow

Encapsulate trait conversions into operators

JIT data flow inspection

Inspect flows to load-balance

Flow Scope Trait
Delegation Heterogeneous Parallelism
Control
Routing Homogeneous Parallelism
Transfer Data Locality
Data
Granularity Execution Granularity

aggregate

router

&
:

aggregate

unpack
mem-move

é aggregate 2 gpu2cpu

. pack
filter ' ‘
filter
SCan
unpack
cpu2gpu
mem-move

router

Distribute load to devices adaptively -

[VLDB2019]

Abstractions for fast CPU-GPU analytics

[CIDR2019]
ﬁ { intra-operator &

» Operator tuning is p-architecture specific
» Tune operators to memory hierarchy specifics

: > ¢

intra-device #°

» Portability clashes with specialization

» |nject target-specific info using codegen

g inter-device

| I ® Limited device inter-operability
g5 » Encapsulate heterogeneity and balance load

Selective obliviousness i

The game changers

i

——

A : Workloads

Complex and unpredictable

17

/
v - - i
gy
2%
Sedy " = /
N “A i
g M&\\(' v = °

——

EEEETN Transactions Analytics
OLTP oL

Data freshness bounded by ETL latency -

ybrid Transactional and Analytical Processing

OLTP: task-parallel E®H

— High rate of short-lived transactions
— Mostly point accesses (high data access locality)

OLAP: data-parallel HIPO\

— Few, but long-running queries
— Scans large parts of database

| o oo o, By o, IEE,

Align tasks & hardware to improve utilization

T A= PL
HTAP: Chasing ‘locality of freshness’

Performance

' i Data fresh
Static OLAP-OLTP assignment ata fres nSS

— Unnecessary tradeoff between interference and performance
— Pre-determined resource assignment based on workload type

— Wasteful data consolidation and synchronization

execution execution

Real-time, Adaptive scheduling of HTAP workloads
— Specialize to requirements and data/freshness-rates

— Workload-based resource assignment

— Pay-as-you-go snapshot updates @ L @

Task placement based on resource usage -

Workload Isolation & Fresh Data Throughput
m Interference <> performance

Fre th

Pre-determined resource assignment

Isolated Hybrid-Access Elastic-Compute Colocated

¥e S8

Fresh Data Access Bandwidth

Independent execution (isolation

no extreme is good s

Workload Isolation & Fresh Data

Isolated Hybrid-Access Elastic-Compute Colocated

Real-time: Adaptive scheduling of HTAP workloads

— Specialize to requirements and amount of unconsolidated data
— Workload-based resource assignment
— Pay-as-you-go snapshot updates

Task placement & consolidation based on

Caldera: HTAP on CPU-GPU Servers

[CIDR2017]
Store data in shared memory

Run OLTP workloads on task-parallel processors

Run OLAP workloads on data-parallel processors

— On-demand copy-on-write snapshots in shared memory

Adaptlvely scalmg resources with Ioad s

GPU Accesses Fresh Data from CPU Memory

@[CIDR201 7, CIDR2020, SIGMOD2020]

O
gy
[~)
5%

(1

OLTP generates fresh data
on CPU Memory

Data access protected by

NVLink
concurrency control

OLAP needs to access
fresh data

snapshot isolation for OLAP w/o CC overheads

GPU Accesses Fresh Data from CPU Memory

E[CIDR201 7, CIDR2020, SIGMOD2020]
B~

mmmmmmm

OLTP generates fresh data
on CPU Memory

Data access protected by DRAM

F
NVLink |
concurrency control - I

OLAP needs to access
fresh data

snapshot isolation for OLAP w/o CC overheads

T A= L=y =] =
Increasing workload complexity

Diverse modern data problems gicj}%
— 0T, OCR, ML, NLP, Medical, Mathematics etc...

Commercial Al/ML

DBMS catch-up for popular functionality %
— Human effort and big delays dldlal
— Oblivious to out-of-DBMS workflows A:ﬁ:;?ct:d
Vast resource of libraries Y (“ﬁ”)
— Authored by domain experts, used by everybody @ S

— Loose library-to-data-sources integration and optimization Conversational ~ and analytics
analytics and NLP

Need for systems that can “learn” new functionality

Network looks like a single machine

Similar intra-/inter-server interconnect bandwidth
Local memories and NUMA effects across devices
CPU-GPU: Capacity-Throughput

— ; 'T:L
[mm— [fizeess | [mmm)
B B 5 ssassa sammae o] (H
- SIS | EEE S
BEE | |EEE HH :r]
N 5

Heterogeneous interconnected devices across

i

i1l
——

kloads
-A/\ ,AV_VOI‘
s o

Hardware

A solution is only as efficient
as its least adaptive component.

